Nonlinear Dynamic Response of Galfenol Cantilever Energy Harvester Considering Geometric Nonlinear with a Nonlinear Energy Sink

被引:0
|
作者
Wang, Lingzhi [1 ]
Liu, Chao [1 ]
Liu, Weidong [1 ]
Yan, Zhitao [1 ]
Nie, Xiaochun [1 ]
机构
[1] Chongqing Univ Sci & Technol, Sch Civil Engn & Architecture, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Galfenol; nonlinear energy sink (NES); geometric nonlinearity; energy harvesting; vibration suppression; SKIDDING BEHAVIOR; BEAM;
D O I
10.3390/buildings14051482
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The nonlinear energy sink (NES) and Galfenol material can achieve vibration suppression and energy harvesting of the structure, respectively. Compared with a linear structure, the geometric nonlinearity can affect the output performances of the cantilever beam structure. This investigation aims to present a coupled system consisting of a nonlinear energy sink (NES) and a cantilever Galfenol energy harvesting beam with geometric nonlinearity. Based on Hamilton's principle, linear constitutive equations of magnetostrictive material, and Faraday's law of electromagnetic induction, the theoretical dynamic model of the coupled system is proposed. Utilizing the Galliakin decomposition method and Runge-Kutta method, the harvested power of the external load resistance, and tip vibration displacements of the Galfenol energy harvesting model are analyzed. The influences of the external excitation, external resistance, and NES parameters on the output characteristic of the proposed coupling system have been investigated. Results reveal that introducing NES can reduce the cantilever beam's vibration while considering the geometric nonlinearity of the cantilever beam can induce a nonlinear softening phenomenon for the output behaviors. Compared to the linear system without NES, the coupling model proposed in this work can achieve dual efficacy goals over a wide range of excitation frequencies when selecting appropriate parameters. In general, large excitation amplitude and NES stiffness, small external resistance, and small or large NES damping values can achieve the effect of broadband energy harvesting.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Design and experimental study of a Nonlinear Energy Sink coupled to an electromagnetic energy harvester
    Pennisi, G.
    Mann, B. P.
    Naclerio, N.
    Stephan, C.
    Michon, G.
    JOURNAL OF SOUND AND VIBRATION, 2018, 437 : 340 - 357
  • [22] Nonlinear energy sink coupled with a nonlinear oscillator
    Das, Rahul
    Bajaj, Anil K.
    Gupta, Sayan
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2023, 148
  • [23] Nonlinear dynamics of a track nonlinear energy sink
    Li, Hao-Bo
    Ding, Hu
    Chang, Tien-Chong
    Chen, Li-Qun
    NONLINEAR DYNAMICS, 2024, 112 (14) : 11803 - 11827
  • [24] Nonlinear dynamic analysis of a cable-stayed beam with a nonlinear energy sink
    Yifei Wang
    Houjun Kang
    Yunyue Cong
    Tieding Guo
    Tao Fu
    Acta Mechanica, 2024, 235 : 1921 - 1944
  • [25] Nonlinear dynamic analysis of a cable-stayed beam with a nonlinear energy sink
    Wang, Yifei
    Kang, Houjun
    Cong, Yunyue
    Guo, Tieding
    Fu, Tao
    ACTA MECHANICA, 2024, 235 (04) : 1921 - 1944
  • [26] Nonlinear piezoelectric energy harvester
    Cui, Yan
    Wang, Fei
    Dong, Wei-Jie
    Yao, Ming-Lei
    Wang, Li-Ding
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2012, 20 (12): : 2737 - 2743
  • [27] Investigation of a Nonlinear Energy Harvester
    Ando, Bruno
    Baglio, Salvatore
    Bulsara, Adi R.
    Marletta, Vincenzo
    Pistorio, Antonio
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (05) : 1067 - 1075
  • [28] Study on vibration energy harvesting of offshore platform by energy harvester based on nonlinear energy sink
    Chang, Zongyu
    Ge, Maokun
    Yao, Zhipeng
    Zheng, Zhongqiang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2022, 236 (04) : 984 - 995
  • [29] ANALYSIS ON VIBRATION SUPPRESSION RESPONSE OF NONLINEAR ENERGY SINK WITH COMBINED NONLINEAR DAMPING
    Zhang Y.
    Kong X.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (04): : 972 - 981
  • [30] Flutter suppression of an airfoil using a nonlinear energy sink combined with a piezoelectric energy harvester
    Zhang, Hang
    Li, Zhiyuan
    Yang, Zhichun
    Zhou, Shengxi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125