Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?

被引:0
|
作者
Wang, Chuwei [1 ]
Li, Shanda [2 ,5 ]
He, Di [3 ]
Wang, Liwei [3 ,4 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA
[3] Peking Univ, Sch Intelligence Sci & Technol, Natl Key Lab Gen Artificial Intelligence, Beijing, Peoples R China
[4] Peking Univ, Ctr Data Sci, Beijing, Peoples R China
[5] Zhejiang Lab, Hangzhou, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Physics-Informed Neural Network (PINN) approach is a new and promising way to solve partial differential equations using deep learning. The L-2 Physics-Informed Loss is the de-facto standard in training Physics-Informed Neural Networks. In this paper, we challenge this common practice by investigating the relationship between the loss function and the approximation quality of the learned solution. In particular, we leverage the concept of stability in the literature of partial differential equation to study the asymptotic behavior of the learned solution as the loss approaches zero. With this concept, we study an important class of high-dimensional non-linear PDEs in optimal control, the Hamilton-Jacobi-Bellman (HJB) Equation, and prove that for general L-p Physics-Informed Loss, a wide class of HJB equation is stable only if p is sufficiently large. Therefore, the commonly used L-2 loss is not suitable for training PINN on those equations, while L-infinity loss is a better choice. Based on the theoretical insight, we develop a novel PINN training algorithm to minimize the L-infinity loss for HJB equations which is in a similar spirit to adversarial training. The effectiveness of the proposed algorithm is empirically demonstrated through experiments. Our code is released at https://github.com/LithiumDA/L_inf-PINN.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Improved Training of Physics-Informed Neural Networks with Model Ensembles
    Haitsiukevich, Katsiaryna
    Ilin, Alexander
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [22] Physics-informed neural networks based cascade loss model
    Feng Y.
    Song X.
    Yuan W.
    Lu H.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (07): : 845 - 855
  • [23] Spiking Physics-Informed Neural Networks on Loihi 2
    Theilman, Bradley H.
    Zhang, Qian
    Kahana, Adar
    Cyr, Eric C.
    Trask, Nathaniel
    Aimone, James B.
    Karniadakis, George Em
    2024 NEURO INSPIRED COMPUTATIONAL ELEMENTS CONFERENCE, NICE, 2024,
  • [24] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [25] Physics-Informed Neural Network for Nonlinear Dynamics in Fiber Optics
    Jiang, Xiaotian
    Wang, Danshi
    Fan, Qirui
    Zhang, Min
    Lu, Chao
    Lau, Alan Pak Tao
    LASER & PHOTONICS REVIEWS, 2022, 16 (09)
  • [26] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [27] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [28] Acoustic scattering simulations via physics-informed neural network
    Nair, Siddharth
    Walsh, Timothy F.
    Pickrell, Gregory
    Semperlotti, Fabio
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2024, 2024, 12949
  • [29] A Physics-Informed Neural Network approach for compartmental epidemiological models
    Millevoi, Caterina
    Pasetto, Damiano
    Ferronato, Massimiliano
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [30] Predicting ocean pressure field with a physics-informed neural network
    Yoon, Seunghyun
    Park, Yongsung
    Gerstoft, Peter
    Seong, Woojae
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (03): : 2037 - 2049