Prediction of sloshing pressure using image-based deep learning

被引:1
|
作者
Kim, Ki Jong [1 ]
Kim, Daegyoum [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Sloshing; Deep learning; Residual neural network; Pressure; Wave image; IMPACT PRESSURES;
D O I
10.1016/j.oceaneng.2024.117718
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This study investigates an image -based deep learning method for predicting various types of sloshing pressure, including regular, weak impulse, random, and peak pressures. The time series of pressure at a specific location on a tank wall are estimated from independent features of the sequential images of free -surface waves in sloshing flow. A dataset of wave images labeled with pressure is inserted into the residual neural network (ResNet) to enable the training of neural networks without encountering the problem of vanishing gradients. The hyperparameters of the ResNet algorithm are tuned to determine the optimal learning rate, mini -batch size, and strength of L 1 regularization. Compared with experimental measurements, the prediction performance regarding the time history of pressure is remarkably good in the non -resonance regime, and the predictions exhibit reasonable agreement in the resonance regime. Notably, the method for pressure normalization has a significant impact on the prediction performance for peak pressure in the resonance regime, affecting both the magnitude and profile of the pressure. Furthermore, to enable practical applications of the proposed model, training is conducted using a comprehensive dataset of wave images including all pressure types. The model successfully estimates the time history for the different pressure types that occur sequentially.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Deep learning for image-based weed detection in turfgrass
    Yu, Jialin
    Sharpe, Shaun M.
    Schumann, Arnold W.
    Boyd, Nathan S.
    EUROPEAN JOURNAL OF AGRONOMY, 2019, 104 : 78 - 84
  • [42] Deep Learning for Image-Based Cassava Disease Detection
    Ramcharan, Amanda
    Baranowski, Kelsee
    McCloskey, Peter
    Ahmed, Babuali
    Legg, James
    Hughes, David P.
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [43] Explainable Methods for Image-Based Deep Learning: A Review
    Lav Kumar Gupta
    Deepika Koundal
    Shweta Mongia
    Archives of Computational Methods in Engineering, 2023, 30 : 2651 - 2666
  • [44] Classification of wheat varieties with image-based deep learning
    Ceyhan, Merve
    Kartal, Yusuf
    Ozkan, Kemal
    Seke, Erol
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 9597 - 9619
  • [45] Genomic pan-cancer classification using image-based deep learning
    Ye, Taoyu
    Li, Sen
    Zhang, Yang
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 835 - 846
  • [46] Rapid and sensitive mycoplasma detection system using image-based deep learning
    Hiroko Iseoka
    Masao Sasai
    Shigeru Miyagawa
    Kazuhiro Takekita
    Satoshi Date
    Hirohito Ayame
    Azusa Nishida
    Sho Sanami
    Takao Hayakawa
    Yoshiki Sawa
    Journal of Artificial Organs, 2022, 25 : 50 - 58
  • [47] Classification of wheat varieties with image-based deep learning
    Merve Ceyhan
    Yusuf Kartal
    Kemal Özkan
    Erol Seke
    Multimedia Tools and Applications, 2024, 83 : 9597 - 9619
  • [48] Deep learning for image-based mobile malware detection
    Mercaldo, Francesco
    Santone, Antonella
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2020, 16 (02) : 157 - 171
  • [49] Genomic pan-cancer classification using image-based deep learning
    Ye T.
    Li S.
    Zhang Y.
    Zhang, Yang (zhangyang07@hit.edu.cn), 1600, Elsevier B.V. (19): : 835 - 846
  • [50] Deep learning for image-based mobile malware detection
    Francesco Mercaldo
    Antonella Santone
    Journal of Computer Virology and Hacking Techniques, 2020, 16 : 157 - 171