Basalt fiber reinforced polypropylene to manufacture 3D printed composites

被引:1
|
作者
Pelaez-Samaniego, Manuel Raul [1 ,2 ]
Rhodes, Kyleigh [2 ,3 ]
Garcia-Perez, Tsai [1 ]
Chang, Yu-Chung [2 ]
Zhang, Jinwen [2 ]
Bin Bakri, Muhammad Khusairy [2 ]
Yadama, Vikram [2 ,4 ]
机构
[1] Univ Cuenca, Fac Chem Sci, Dept Appl Chem & Syst Prod, Cuenca, Ecuador
[2] Washington State Univ, Composite Mat & Engn Ctr, Pullman, WA USA
[3] Willamette Valley Co, Bio Mat, Eugene, OR USA
[4] Washington State Univ, CMEC, Paccar 160, Pullman, WA 99163 USA
基金
美国国家科学基金会;
关键词
3D printing; basalt fiber; composites; fused deposition modeling; polypropylene; WOOD-PLASTIC COMPOSITES; CARBON-FIBER; MECHANICAL-PROPERTIES; GLASS; RESISTANCE; STRENGTH; BEHAVIOR;
D O I
10.1002/pc.28641
中图分类号
TB33 [复合材料];
学科分类号
摘要
Polypropylene (PP) is one of the most used polymeric materials worldwide, either as a neat material or as a matrix for composite manufacture employing a molding process. Fused deposition modeling (FDM) 3D printing is an alternative process that offers the potential for manufacturing value-added products from PP. However, using neat PP for FDM is challenging because 3D-printed PP warps and shrinks when cooled, and the mechanical properties of PP are poor. PP-based composites with different fillers (e.g., glass, carbon, and natural fibers) have shown improved properties using FDM processes. An alternative filler for 3D-printed PP-based composites is basalt fiber (BF). The objective of this work was to assess the potential and impacts of BF as a filler for BF-PP composites using FDM processes. PP was compounded with 15, 25, 35, and 45 wt% BF to produce filaments for 3D printing without adding any compatibilizer. Results of rheology studies, morphology, and mechanical and thermal properties of the 3D printed specimens showed that BF positively impacts Young's modulus (E), thermal stability, and dimensional stability of the composite. All composites, when processed at high shear rates (i.e., above 100 1/s), show approximately similar rheological behavior. E is almost doubled in the composite with 25 wt% BF and increased fourfold in the composite with 35 and 45 wt% BF, compared to neat PP. The Izod impact resistance of the formulations containing 35 and 45 wt% BF is similar to 70% that of neat PP. BF process easily and adequately reinforces PP composites manufactured via FDM.
引用
收藏
页码:12362 / 12376
页数:15
相关论文
共 50 条
  • [31] Carbon Fiber Polymer Reinforced 3D Printed Composites for Centrifugal Pump Impeller Manufacturing
    Mansour, Gabriel
    Papageorgiou, Vasileios
    Tzetzis, Dimitrios
    TECHNOLOGIES, 2024, 12 (04)
  • [32] Tensile property evaluations of 3D printed continuous carbon fiber reinforced thermoplastic composites
    Todoroki, Akira
    Oasada, Tastuki
    Mizutani, Yoshihiro
    Suzuki, Yoshiro
    Ueda, Masahito
    Matsuzaki, Ryosuke
    Hirano, Yoshiyasu
    ADVANCED COMPOSITE MATERIALS, 2020, 29 (02) : 147 - 162
  • [33] Recent advances in 3D printed fiber reinforced composites: Processing technique and mechanical performance
    Long Y.
    Li Y.
    Fu K.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (09): : 4196 - 4212
  • [34] Reducing Surface Roughness of 3D Printed Short-Carbon Fiber Reinforced Composites
    Maier, Raluca
    Bucaciuc, Sebastian-Gabriel
    Mandoc, Andrei Cristian
    MATERIALS, 2022, 15 (20)
  • [35] MECHANICAL AND MATERIAL CHARACTERIZATION OF 3D PRINTED CONTINUOUS FIBER REINFORCED PHOTOPOLYMER MATRIX COMPOSITES
    Sandell, Peter
    Billings, Christopher
    Liu, Yingtao
    PROCEEDINGS OF ASME 2023 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2023, 2023,
  • [36] Bamboo-inspired 3D printed continuous fiber-reinforced vascular composites
    Li, Qifeng
    Zhang, Dou
    Zhang, Shengbo
    Soete, Jeroen
    V. Lomov, Stepan
    Gorbatikh, Larissa
    Zeng, Chengjun
    COMPOSITES COMMUNICATIONS, 2025, 53
  • [37] Open hole tensile testing of 3D printed continuous carbon fiber reinforced composites
    Sanei, Seyed H. R.
    Arndt, Andrew
    Doles, Randall
    JOURNAL OF COMPOSITE MATERIALS, 2020, 54 (20) : 2687 - 2695
  • [38] Multi-scale analysis for 3D printed continuous fiber reinforced thermoplastic composites
    Fu, Yutong
    Yao, Xuefeng
    Composites Science and Technology, 2021, 216
  • [39] Torsional Response of 3D Printed Onyx and Onyx-Carbon Fiber Reinforced Composites
    Fandetti, Dustin
    Siddiqui, Sanna F.
    Gordon, Ali P.
    AIAA SCITECH 2024 FORUM, 2024,
  • [40] Multi-scale analysis for 3D printed continuous fiber reinforced thermoplastic composites
    Fu, Yutong
    Yao, Xuefeng
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 216