Algebraic independence and linear difference equations
被引:1
|
作者:
Adamczewski, Boris
论文数: 0引用数: 0
h-index: 0
机构:
Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, FranceUniv Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
Adamczewski, Boris
[1
]
Dreyfus, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, FranceUniv Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
Dreyfus, Thomas
[2
]
Hardouin, Charlotte
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paul Sabatier, Inst Math Toulouse, F-31062 Toulouse, FranceUniv Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
Hardouin, Charlotte
[3
]
Wibmer, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Graz Univ Technol, Inst Anal & Number Theory, A-8010 Graz, AustriaUniv Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
Wibmer, Michael
[4
]
机构:
[1] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
[2] Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[3] Univ Paul Sabatier, Inst Math Toulouse, F-31062 Toulouse, France
[4] Graz Univ Technol, Inst Anal & Number Theory, A-8010 Graz, Austria
Linear difference equations;
q-difference;
Mahler functions;
algebraic independence;
D O I:
10.4171/JEMS/1316
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider pairs of automorphisms (0, a) acting on fields of Laurent or Puiseux series: a: x 7! q2x), and of Mahler operators (0: x 7! xp1 , a: x 7! xp2). Given a solution f to a linear 0-equation and a solution g to an algebraic a-equation, both transcendental, we show that f and g are algebraically independent over the field of rational functions, assuming that the corresponding parameters are sufficiently independent. As a consequence, we settle a conjecture about Mahler functions put forward by Loxton and van der Poorten in 1987. We also give an application to the algebraic independence of q-hypergeometric functions. Our approach provides a general strategy to study this kind of question and is based on a suitable Galois theory: the a-Galois theory of linear 0-equations.