Microstructure-Based Modeling of Deformation and Damage Behavior of Extruded and Additively Manufactured 316L Stainless Steels

被引:0
|
作者
Wang, Huai [1 ]
Lee, Ho-Won [2 ]
Tran, Minh Tien [2 ]
Kim, Dong-Kyu [3 ]
机构
[1] Qingdao Univ Technol, Sch Mech & Automot Engn, Qingdao 266520, Peoples R China
[2] Korea Inst Mat Sci, Dept Mat AI & Big Data, Chang Won 51508, South Korea
[3] Konkuk Univ, Dept Mech & Aerosp Engn, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
additive manufacturing; crystal plasticity; microstructure; mechanical behavior; damage; stainless steel; HIGH-STRENGTH; PLASTICITY; DIFFRACTION; ENERGY;
D O I
10.3390/ma17102360
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we investigated the micromechanical deformation and damage behavior of commercially extruded and additively manufactured 316L stainless steels (AMed SS316L) by combining experimental examinations and crystal plasticity modeling. The AMed alloy was fabricated using the laser powder bed fusion (LPBF) technique with an orthogonal scanning strategy to control the directionality of the as-fabricated material. Optical microscopy and electron backscatter diffraction measurements revealed distinct grain morphologies and crystallographic textures in the two alloys. Uniaxial tensile test results suggested that the LPBFed alloy exhibited an increased yield strength, reduced elongation, and comparable ultimate tensile strength in comparison to those of the extruded alloy. A microstructure-based crystal plasticity model was developed to simulate the micromechanical deformation behavior of the alloys using representative volume elements based on realistic microstructures. A ductile fracture criterion based on the microscopically dissipated plastic energy on a slip system was adopted to predict the microscopic damage accumulation of the alloys during plastic deformation. The developed model could accurately predict the stress-strain behavior and evolution of the crystallographic textures in both the alloys. We reveal that the increased yield strength in the LPBFed alloy, compared to that in the extruded alloy, is attributed to the higher as-manufactured dislocation density and the cellular subgrain structure, resulting in a reduced elongation. The presence of annealing twins and favorable texture in the extruded alloy contributed to its excellent elongation, along with a higher hardening rate owing to twin-dislocation interactions during plastic deformation. Moreover, the grain morphology and defect state (e.g., dislocations and twins) in the initial state can significantly affect strain localization and damage accumulation in alloys.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Corrosion behavior of additively manufactured 316L stainless steel in acidic media
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    MATERIALIA, 2018, 2 : 111 - 121
  • [22] Hetero-deformation-induced stress in additively manufactured 316L stainless steel
    Kong, Decheng
    Dong, Chaofang
    Ni, Xiaoqing
    Liang, Zhang
    Man, Cheng
    Li, Xiaogang
    MATERIALS RESEARCH LETTERS, 2020, 8 (10): : 390 - 397
  • [23] Thermomechanical fatigue of additively manufactured 316L stainless steel
    Babinsky, T.
    Sulak, I.
    Kubena, I.
    Man, J.
    Weiser, A.
    Svabenska, E.
    Englert, L.
    Guth, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869
  • [24] Additively manufactured 316L stainless steel: An efficient electrocatalyst
    Lodhi, M. J. K.
    Deen, K. M.
    Haider, Waseem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (45) : 24698 - 24704
  • [25] Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel
    Voloskov, Boris
    Evlashin, Stanislav
    Dagesyan, Sarkis
    Abaimov, Sergey
    Akhatov, Iskander
    Sergeichev, Ivan
    MATERIALS, 2020, 13 (15)
  • [26] Dynamic mechanical behavior and microstructural evolution of additively manufactured 316L stainless steel
    Yu, Hongyu
    Chen, Rong
    Liu, Wenyang
    Li, Simeng
    Chen, Ling
    Hou, Shujuan
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (18) : 8425 - 8441
  • [27] Dynamic mechanical behavior and microstructural evolution of additively manufactured 316L stainless steel
    Hongyu Yu
    Rong Chen
    Wenyang Liu
    Simeng Li
    Ling Chen
    Shujuan Hou
    Journal of Materials Science, 2022, 57 : 8425 - 8441
  • [28] Near-full density enabled excellent dynamic mechanical behavior in additively manufactured 316L stainless steels
    Wang, Yuan
    Li, Xuhai
    Yao, Xiaotian
    Hou, Qiyue
    Li, Zhiguo
    Wu, Fengchao
    Yu, Yuying
    Li, Xuemei
    Hu, Jianbo
    MATERIALS & DESIGN, 2024, 245
  • [29] Microstructure and Mechanical Properties of Welded Additively Manufactured Stainless Steels SS316L
    Pasang, T.
    Kirchner, A.
    Jehring, U.
    Aziziderouei, M.
    Tao, Y.
    Jiang, C. R.
    Wang, J. C.
    Aisyah, I. S.
    METALS AND MATERIALS INTERNATIONAL, 2019, 25 (05) : 1278 - 1286
  • [30] Microstructure and Mechanical Properties of Welded Additively Manufactured Stainless Steels SS316L
    T. Pasang
    A. Kirchner
    U. Jehring
    M. Aziziderouei
    Y. Tao
    C. -P. Jiang
    J. C. Wang
    I. S. Aisyah
    Metals and Materials International, 2019, 25 : 1278 - 1286