Effects of wind speed and wind direction on crop yield forecasting using dynamic time warping and an ensembled learning model

被引:4
|
作者
Bediako-Kyeremeh, Bright [1 ]
Ma, TingHuai [2 ,3 ]
Rong, Huan [4 ]
Osibo, Benjamin Kwapong [2 ]
Mamelona, Lorenzo [1 ]
Nti, Isaac Kofi [5 ]
Amoah, Lord [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China
[3] Jiangsu Ocean Univ, Sch Comp Engn, , China Nanjing, Lianyungang, Jiangsu, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing, Jiangsu, Peoples R China
[5] Univ Cincinnati, Dept Informat Technol, Cincinnati, OH USA
来源
PEERJ | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
DTW; Wind speed; Wind direction; Ensembled; LSTM; Cashew; Crop yield; Sustainable farming;
D O I
10.7717/peerj.16538
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The cultivation of cashew crops carries numerous economic advantages, and countries worldwide that produce this crop face a high demand. The effects of wind speed and wind direction on crop yield prediction using pro fi cient deep learning algorithms are less emphasized or researched. We propose a combination of advanced deep learning techniques, speci fi cally focusing on long short-term memory (LSTM) and random forest models. We intend to enhance this ensemble model using dynamic time warping (DTW) to assess the spatiotemporal data (wind speed and wind direction) similarities within Jaman North, Jaman South, and Wenchi with their respective production yield. In the Bono region of Ghana, these three areas are crucial for cashew production. The LSTM-DTW-RF model with wind speed and wind direction achieved an R 2 score of 0.847 and the LSTM-RF model without these two key features R 2 score of (0.74). Both models were evaluated using the augmented Dickey -Fuller (ADF) test, which is commonly used in time series analysis to assess stationarity, where the LSTM-DTW-RF achieved a 90% level of con fi dence, while LSTM-RF attained an 87.99% level. Among the three municipalities, Jaman South had the highest evaluation scores for the model, with an RMSE of 0.883, an R 2 of 0.835, and an MBE of 0.212 when comparing actual and predicted values for Wenchi. In terms of the annual average wind direction, Jaman North recorded (270.5 SW degrees ), Jaman South recorded (274.8 SW degrees ), and Wenchi recorded (272.6 SW degrees ). The DTW similarity distance for the annual average wind speed across these regions fell within speci fi c ranges: Jaman North (+/- 25.72), Jaman South (+/- 25.89), and Wenchi (+/- 26.04). Following the DTW similarity evaluation, Jaman North demonstrated superior performance in wind speed, while Wenchi excelled in wind direction. This underscores the potential ef fi ciency of DTW when incorporated into the analysis of environmental factors affecting crop yields, given its invariant nature. The results obtained can guide further exploration of DTW variations in combination with other machine learning models to predict higher cashew yields. Additionally, these fi ndings emphasize the signi fi cance of wind speed and direction in vertical farming, contributing to informed decisions for sustainable agricultural growth and development.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Wind Speed Time Series Forecasting Using a Neural Network Model Inspired Biologically
    Sandra M, Valdivia Bautista
    Eduardo, Rangel-Carrillo
    Marco A, Perez Cisneros
    Luis J, Ricalde
    Miguel A, Olmos Gomez
    Alma Y, Alanis
    Luis A, Jimenez
    2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2018,
  • [22] Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm
    Ibrahim, Abdelhameed
    Mirjalili, Seyedali
    El-Said, M.
    Ghoneim, Sherif S. M.
    Al-Harthi, Mosleh M.
    Ibrahim, Tarek F.
    El-Kenawy, El-Sayed M.
    IEEE ACCESS, 2021, 9 : 125787 - 125804
  • [23] Wind power forecasting based on daily wind speed data using machine learning algorithms
    Demolli, Halil
    Dokuz, Ahmet Sakir
    Ecemis, Alper
    Gokcek, Murat
    ENERGY CONVERSION AND MANAGEMENT, 2019, 198
  • [24] Forecasting and simulating wind speed in Corsica by using an autoregressive model
    Poggi, P
    Muselli, M
    Notton, G
    Cristofari, C
    Louche, A
    ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (20) : 3177 - 3196
  • [25] A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting
    Liu, Guanjun
    Wang, Chao
    Qin, Hui
    Fu, Jialong
    Shen, Qin
    ENERGIES, 2022, 15 (19)
  • [26] Rolling Correction Model of Ramp for Wind Power Based on Dynamic Time Warping
    Yang J.
    Xu S.
    Jiang S.
    Liu Y.
    Ke D.
    Xu J.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45 (16): : 152 - 159
  • [27] Wind Speed Forecasting with a Clustering-Based Deep Learning Model
    Kosanoglu, Fuat
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [28] Dynamic time scan forecasting for multi-step wind speed prediction
    Costa, Marcelo Azevedo
    Ruiz-Cardenas, Ramiro
    Mineti, Leandro Brioschi
    Prates, Marcos Oliveira
    RENEWABLE ENERGY, 2021, 177 : 584 - 595
  • [29] Solar Radiation and Wind Speed Forecasting using Deep Learning Technique
    Islam, Md Mainul
    Nagrial, Mahmood
    Rizk, Jamal
    Hellany, Ali
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [30] An adaptive hybrid system using deep learning for wind speed forecasting
    de Mattos Neto, Paulo S. G.
    de Oliveira, Joao F. L.
    Santos Junior, Domingos S. de O.
    Siqueira, Hugo Valadares
    Marinho, Manoel H. N.
    Madeiro, Francisco
    INFORMATION SCIENCES, 2021, 581 : 495 - 514