An Ensemble Machine Learning Model to Estimate Urban Water Quality Parameters Using Unmanned Aerial Vehicle Multispectral Imagery

被引:0
|
作者
Lei, Xiangdong [1 ]
Jiang, Jie [1 ]
Deng, Zifeng [1 ]
Wu, Di [1 ]
Wang, Fangyi [1 ]
Lai, Chengguang [1 ,2 ]
Wang, Zhaoli [1 ,2 ]
Chen, Xiaohong [3 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, State Key Lab Subtrop Bldg & Urban Sci, Guangzhou 510641, Peoples R China
[2] Pazhou Lab, Guangzhou 510335, Peoples R China
[3] Sun Yat Sen Univ, Ctr Water Resources & Environm, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
UAV remote sensing; optically and non-optically active parameters; genetic algorithm; ensemble machine learning; LAKE TAIHU; CLASSIFICATION; EUTROPHICATION; REFLECTANCE;
D O I
10.3390/rs16122246
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban reservoirs contribute significantly to human survival and ecological balance. Machine learning-based remote sensing techniques for monitoring water quality parameters (WQPs) have gained increasing prominence in recent years. However, these techniques still face challenges such as inadequate band selection, weak machine learning model performance, and the limited retrieval of non-optical active parameters (NOAPs). This study focuses on an urban reservoir, utilizing unmanned aerial vehicle (UAV) multispectral remote sensing and ensemble machine learning (EML) methods to monitor optically active parameters (OAPs, including Chla and SD) and non-optically active parameters (including CODMn, TN, and TP), exploring spatial and temporal variations of WQPs. A framework of Feature Combination and Genetic Algorithm (FC-GA) is developed for feature band selection, along with two frameworks of EML models for WQP estimation. Results indicate FC-GA's superiority over popular methods such as the Pearson correlation coefficient and recursive feature elimination, achieving higher performance with no multicollinearity between bands. The EML model demonstrates superior estimation capabilities for WQPs like Chla, SD, CODMn, and TP, with an R2 of 0.72-0.86 and an MRE of 7.57-42.06%. Notably, the EML model exhibits greater accuracy in estimating OAPs (MRE <= 19.35%) compared to NOAPs (MRE <= 42.06%). Furthermore, spatial and temporal distributions of WQPs reveal nitrogen and phosphorus nutrient pollution in the upstream head and downstream tail of the reservoir due to human activities. TP, TN, and Chla are lower in the dry season than in the rainy season, while clarity and CODMn are higher in the dry season than in the rainy season. This study proposes a novel approach to water quality monitoring, aiding in the identification of potential pollution sources and ecological management.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Tree Detection and Health Monitoring in Multispectral Aerial Imagery and Photogrammetric Pointclouds Using Machine Learning
    Windrim, Lloyd
    Carnegie, Angus J.
    Webster, Murray
    Bryson, Mitch
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2554 - 2572
  • [42] High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery
    Sankaran, Sindhuja
    Zhou, Jianfeng
    Khot, Lay R.
    Trapp, Jennifer J.
    Mndolwa, Eninka
    Miklas, Phillip N.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 151 : 84 - 92
  • [43] Canopy Top, Height and Photosynthetic Pigment Estimation Using Parrot Sequoia Multispectral Imagery and the Unmanned Aerial Vehicle (UAV)
    Kopackova-Strnadova, Veronika
    Koucka, Lucie
    Jelenek, Jan
    Lhotakova, Zuzana
    Oulehle, Filip
    REMOTE SENSING, 2021, 13 (04) : 1 - 27
  • [44] Using High-Resolution Imagery Acquired with an Autonomous Unmanned Aerial Vehicle for Urban Construction and Planning
    Ma, Lei
    Li, Manchun
    Wang, Yafei
    Tong, Lihua
    Cheng, Liang
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 200 - 203
  • [45] Precision Forestry: Trees Counting in Urban Areas Using Visible Imagery based on an Unmanned Aerial Vehicle
    Hassaan, Omair
    Nasir, Ahmad Kamal
    Roth, Hubert
    Khan, M. Fakhir
    IFAC PAPERSONLINE, 2016, 49 (16): : 16 - 21
  • [46] An ensemble machine learning model for water quality estimation in coastal area based on remote sensing imagery
    Zhu, Xiaotong
    Guo, Hongwei
    Huang, Jinhui Jeanne
    Tian, Shang
    Xu, Wang
    Mai, Youquan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 323
  • [47] Multispectral Remote Sensing for Estimating Water Quality Parameters: A Comparative Study of Inversion Methods Using Unmanned Aerial Vehicles (UAVs)
    Yan, Yong
    Wang, Ying
    Yu, Cheng
    Zhang, Zhimin
    SUSTAINABILITY, 2023, 15 (13)
  • [48] Mapping almond stem water potential using machine learning and multispectral imagery
    Savchik, Peter
    Nocco, Mallika
    Kisekka, Isaya
    IRRIGATION SCIENCE, 2025, 43 (01) : 105 - 120
  • [49] Machine Learning for Precision Agriculture Using Imagery from Unmanned Aerial Vehicles (UAVs): A Survey
    Zualkernan, Imran
    Abuhani, Diaa Addeen
    Hussain, Maya Haj
    Khan, Jowaria
    ElMohandes, Mohamed
    DRONES, 2023, 7 (06)
  • [50] Meta-analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-environmental Monitoring Using Machine Learning and Statistical Models
    Eskandari, Roghieh
    Mahdianpari, Masoud
    Mohammadimanesh, Fariba
    Salehi, Bahram
    Brisco, Brian
    Homayouni, Saeid
    REMOTE SENSING, 2020, 12 (21) : 1 - 32