Learning to Send Reinforcements: Coordinating Multi-Agent Dynamic Police Patrol Dispatching and Rescheduling via Reinforcement Learning

被引:0
|
作者
Joe, Waldy [1 ]
Lau, Hoong Chuin [1 ]
机构
[1] Singapore Management Univ, Sch Comp & Informat Syst, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of coordinating multiple agents in a dynamic police patrol scheduling via a Reinforcement Learning (RL) approach. Our approach utilizes Multi-Agent Value Function Approximation (MAVFA) with a rescheduling heuristic to learn dispatching and rescheduling policies jointly. Often, police operations are divided into multiple sectors for more effective and efficient operations. In a dynamic setting, incidents occur throughout the day across different sectors, disrupting initially-planned patrol schedules. To maximize policing effectiveness, police agents from different sectors cooperate by sending reinforcements to support one another in their incident response and even routine patrol. This poses an interesting research challenge on how to make such complex decision of dispatching and rescheduling involving multiple agents in a coordinated fashion within an operationally reasonable time. Unlike existing MultiAgent RL (MARL) approaches which solve similar problems by either decomposing the problem or action into multiple components, our approach learns the dispatching and rescheduling policies jointly without any decomposition step. In addition, instead of directly searching over the joint action space, we incorporate an iterative best response procedure as a decentralized optimization heuristic and an explicit coordination mechanism for a scalable and coordinated decision-making. We evaluate our approach against the commonly adopted two-stage approach and conduct a series of ablation studies to ascertain the effectiveness of our proposed learning and coordination mechanisms.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 50 条
  • [41] Network Maintenance Planning Via Multi-Agent Reinforcement Learning
    Thomas, Jonathan
    Hernandez, Marco Perez
    Parlikad, Ajith Kumar
    Piechocki, Robert
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2289 - 2295
  • [42] IntelligentCrowd: Mobile Crowdsensing via Multi-Agent Reinforcement Learning
    Chen, Yize
    Wang, Hao
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (05): : 840 - 845
  • [43] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [44] PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning
    Sartoretti, Guillaume
    Kerr, Justin
    Shi, YunFei
    Wagner, Glenn
    Kumar, T. K. Satish
    Koenig, Sven
    Choset, Howie
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (03): : 2378 - 2385
  • [45] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [46] Multi-agent Exploration with Reinforcement Learning
    Sygkounas, Alkis
    Tsipianitis, Dimitris
    Nikolakopoulos, George
    Bechlioulis, Charalampos P.
    2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 630 - 635
  • [47] Hierarchical multi-agent reinforcement learning
    Ghavamzadeh, Mohammad
    Mahadevan, Sridhar
    Makar, Rajbala
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2006, 13 (02) : 197 - 229
  • [48] Partitioning in multi-agent reinforcement learning
    Sun, R
    Peterson, T
    FROM ANIMALS TO ANIMATS 6, 2000, : 325 - 332
  • [49] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372
  • [50] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +