Vibration Control with Reinforcement Learning Based on Multi-Reward Lightweight Networks

被引:0
|
作者
Shu, Yucheng [1 ]
He, Chaogang [1 ]
Qiao, Lihong [1 ]
Xiao, Bin [1 ]
Li, Weisheng [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 09期
基金
中国国家自然科学基金;
关键词
active vibration control; reinforcement learning; lightweight; neural network; prioritized experience replaying; reward function; ALGORITHM;
D O I
10.3390/app14093853
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a reinforcement learning method using a deep residual shrinkage network based on multi-reward priority experience playback for high-frequency and high-dimensional continuous vibration control. Firstly, we keep the underlying equipment unchanged and construct a vibration system simulator using FIR filters to ensure the complete fidelity of the physical model. Then, by interacting with the simulator using our proposed algorithm, we identify the optimal control strategy, which is directly applied to real-world scenarios in the form of a neural network. A multi-reward mechanism is proposed to assist the lightweight network to find a near-optimal control strategy, and a priority experience playback mechanism is used to prioritize the data to accelerate the convergence speed of the neural network and improve the data utilization efficiency. At the same time, the deep residual shrinkage network is introduced to realize adaptive denoising and lightweightness of the neural network. The experimental results indicate that under narrowband white-noise excitation ranging from 0 to 100 Hz, the DDPG algorithm achieved a vibration reduction effect of 12.728 dB, while our algorithm achieved a vibration reduction effect of 20.240 dB. Meanwhile, the network parameters were reduced by more than 7.5 times.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Autonomous Lightweight Scheduling in LoRa-based Networks Using Reinforcement Learning
    Baimukhanov, Batyrkhan
    Gilazh, Bibarys
    Zorbas, Dimitrios
    2024 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING, BLACKSEACOM 2024, 2024, : 268 - 271
  • [22] Reinforcement Learning Based Topology Control for UAV Networks
    Yoo, Taehoon
    Lee, Sangmin
    Yoo, Kyeonghyun
    Kim, Hwangnam
    SENSORS, 2023, 23 (02)
  • [23] Lightweight Multi Car Dynamic Simulator for Reinforcement Learning
    Majumdar, Abhijit
    Benavidez, Patrick
    Jamshidi, Mo
    2018 WORLD AUTOMATION CONGRESS (WAC), 2018, : 211 - 216
  • [24] Reinforcement learning vibration control of a multi-flexible beam coupling system
    Qiu, Zhi-cheng
    Yang, Yang
    Zhang, Xian-min
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 129
  • [25] Reward Shaping Based Federated Reinforcement Learning
    Hu, Yiqiu
    Hua, Yun
    Liu, Wenyan
    Zhu, Jun
    IEEE ACCESS, 2021, 9 : 67259 - 67267
  • [26] Deep reinforcement learning with reward design for quantum control
    Yu H.
    Zhao X.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1087 - 1101
  • [27] Emotion-Based Heterogeneous Multi-agent Reinforcement Learning with Sparse Reward
    Fang B.
    Ma Y.
    Wang Z.
    Wang H.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (03): : 223 - 231
  • [28] Temporal Inconsistency-Based Intrinsic Reward for Multi-Agent Reinforcement Learning
    Sun, Shaoqi
    Xu, Kele
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [29] Probabilistic Reward-Based Reinforcement Learning for Multi-Agent Pursuit and Evasion
    Zhang, Bo-Kun
    Hu, Bin
    Chen, Long
    Zhang, Ding-Xue
    Cheng, Xin-Ming
    Guan, Zhi-Hong
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 3352 - 3357
  • [30] Reward design for multi-agent reinforcement learning with a penalty based on the payment mechanism
    Matsunami N.
    Okuhara S.
    Ito T.
    Transactions of the Japanese Society for Artificial Intelligence, 2021, 36 (05)