A LOCALIZED MESHLESS METHOD FOR TRANSIENT HEAT CONDUCTION WITH APPLICATIONS

被引:0
|
作者
Beggs, Kyle W. [1 ]
Divo, Eduardo A. [2 ]
Kassab, Alain J. [1 ]
机构
[1] Univ Cent Florida, Winter Pk, FL 32816 USA
[2] Embry Riddle Aeronaut Univ, Daytona Beach, FL USA
来源
COMPUTATIONAL THERMAL SCIENCES | 2024年 / 16卷 / 02期
关键词
meshless; radial basis functions; heat conduction; graphics processing unit; numerical technique; FUNCTION COLLOCATION METHOD; DATA APPROXIMATION SCHEME; NUMERICAL-SOLUTION; FLUID-FLOW; EQUATIONS; INTERPOLATION; MULTIQUADRICS; ACCELERATION; CONVERGENCE; POLYNOMIALS;
D O I
10.1615/ComputThermalScien.2024050265
中图分类号
O414.1 [热力学];
学科分类号
摘要
The localized radial basis function (RBF) meshless approach is well suited for modeling transient heat conduction. The advantages of meshless methods, such as ease of discretization, are well known. However, there are still few examples of the method extended to three-dimensional (3D) transient heat conduction for geometries of practical engineering importance; in particular, with respect to graphics processing units (GPUs). In this study, we investigated the localized RBF meshless method in 3D transient heat conduction and explored its application for GPUs. Numerical examples are provided with an application to modeling chip cooling and friction welding.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
  • [11] A meshless model for transient heat conduction in functionally graded materials
    Wang, H
    Qin, QH
    Kang, YL
    COMPUTATIONAL MECHANICS, 2006, 38 (01) : 51 - 60
  • [12] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
    王启防
    戴保东
    栗振锋
    Chinese Physics B, 2013, (08) : 242 - 248
  • [13] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
    Wang Qi-Fang
    Dai Bao-Dong
    Li Zhen-Feng
    CHINESE PHYSICS B, 2013, 22 (08)
  • [14] A localized collocation meshless method (LCMM) for incompressible flows CFD modeling with applications to transient hemodynamics
    El Zahab, Z.
    Divo, E.
    Kassab, A. J.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (8-9) : 1045 - 1061
  • [15] Meshless SPH analysis for transient heat conduction in the functionally graded structures
    Li, Jiao
    Wang, Guangchun
    Zhan, Jianghu
    Liu, Shuai
    Guan, Yanjin
    Naceur, Hakim
    Coutellier, Daniel
    Lin, Jun
    COMPOSITES COMMUNICATIONS, 2021, 24
  • [16] A meshless analysis of three-dimensional transient heat conduction problems
    Cheng, R. J.
    Liew, K. M.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (02) : 203 - 210
  • [17] Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method
    Sladek, J
    Sladek, V
    Zhang, C
    COMPUTATIONAL MATERIALS SCIENCE, 2003, 28 (3-4) : 494 - 504
  • [18] Localized Fourier collocation method for 2D transient heat conduction problems
    Li, Xiaokun
    Zhao, Shengdong
    Qu, Wenzhen
    APPLIED MATHEMATICS LETTERS, 2025, 160
  • [19] A meshless computational method for solving inverse heat conduction problem
    Hon, YC
    Wei, T
    BOUNDARY ELEMENTS XXIV: INCORPORATING MESHLESS SOLUTIONS, 2002, 13 : 135 - 144
  • [20] A MESHLESS FINITE DIFFERENCE METHOD FOR CONJUGATE HEAT CONDUCTION PROBLEMS
    Varanasi, Chandrashekhar
    Murthy, Jayathi Y.
    Mathur, Sanjay
    HT2009: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2009, VOL 2, 2009, : 633 - 644