MetalinksDB: a flexible and contextualizable resource of metabolite-protein interactions

被引:3
|
作者
Farr, Elias [1 ,2 ,3 ]
Dimitrov, Daniel [1 ,2 ]
Schmidt, Christina [1 ,2 ]
Turei, Denes [1 ,2 ]
Lobentanzer, Sebastian [1 ,2 ]
Dugourd, Aurelien [1 ,2 ,4 ]
Saez-Rodriguez, Julio [1 ,2 ,4 ]
机构
[1] Heidelberg Univ, Fac Med, Neuenheimer Feld 130-3, D-69120 Heidelberg, Germany
[2] Heidelberg Univ Hosp, Inst Computat Biomed, Neuenheimer Feld 130-3, D-69120 Heidelberg, Germany
[3] Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge CB10 1SA, England
[4] European Bioinformat Inst, EMBL, Wellcome Genome Campus, Cambridge CB10 1SA, England
关键词
single-cell; spatial; metabolomics; transcriptomics; cell-cell communication; database; REVEALS; DATABASE; KNOWLEDGEBASE; GENOMES; TISSUE;
D O I
10.1093/bib/bbae347
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
From the catalytic breakdown of nutrients to signaling, interactions between metabolites and proteins play an essential role in cellular function. An important case is cell-cell communication, where metabolites, secreted into the microenvironment, initiate signaling cascades by binding to intra- or extracellular receptors of neighboring cells. Protein-protein cell-cell communication interactions are routinely predicted from transcriptomic data. However, inferring metabolite-mediated intercellular signaling remains challenging, partially due to the limited size of intercellular prior knowledge resources focused on metabolites. Here, we leverage knowledge-graph infrastructure to integrate generalistic metabolite-protein with curated metabolite-receptor resources to create MetalinksDB. MetalinksDB is an order of magnitude larger than existing metabolite-receptor resources and can be tailored to specific biological contexts, such as diseases, pathways, or tissue/cellular locations. We demonstrate MetalinksDB's utility in identifying deregulated processes in renal cancer using multi-omics bulk data. Furthermore, we infer metabolite-driven intercellular signaling in acute kidney injury using spatial transcriptomics data. MetalinksDB is a comprehensive and customizable database of intercellular metabolite-protein interactions, accessible via a web interface (https://metalinks.omnipathdb.org/) and programmatically as a knowledge graph (https://github.com/biocypher/metalinks). We anticipate that by enabling diverse analyses tailored to specific biological contexts, MetalinksDB will facilitate the discovery of disease-relevant metabolite-mediated intercellular signaling processes. Graphical Abstract
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle
    Zhang, Youjun
    Beard, Katherine F. M.
    Swart, Corne
    Bergmann, Susan
    Krahnert, Ina
    Nikoloski, Zoran
    Graf, Alexander
    Ratcliffe, R. George
    Sweetlove, Lee J.
    Fernie, Alisdair R.
    Obata, Toshihiro
    NATURE COMMUNICATIONS, 2017, 8
  • [42] PINOT: an intuitive resource for integrating protein-protein interactions
    James E. Tomkins
    Raffaele Ferrari
    Nikoleta Vavouraki
    John Hardy
    Ruth C. Lovering
    Patrick A. Lewis
    Liam J. McGuffin
    Claudia Manzoni
    Cell Communication and Signaling, 18
  • [43] Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle
    Youjun Zhang
    Katherine F. M. Beard
    Corné Swart
    Susan Bergmann
    Ina Krahnert
    Zoran Nikoloski
    Alexander Graf
    R. George Ratcliffe
    Lee J. Sweetlove
    Alisdair R. Fernie
    Toshihiro Obata
    Nature Communications, 8
  • [44] PINOT: an intuitive resource for integrating protein-protein interactions
    Tomkins, James E.
    Ferrari, Raffaele
    Vavouraki, Nikoleta
    Hardy, John
    Lovering, Ruth C.
    Lewis, Patrick A.
    McGuffin, Liam J.
    Manzoni, Claudia
    CELL COMMUNICATION AND SIGNALING, 2020, 18 (01)
  • [45] Protein-metabolite Interactions Based on Chemical Targeting Methods
    Sun, Shuzhe
    Li, Chuntong
    Hou, Hongwei
    Li, Jinghong
    CHEMBIOCHEM, 2025,
  • [46] Regulation of gene expression through protein-metabolite interactions
    Maximilian Hornisch
    Ilaria Piazza
    npj Metabolic Health and Disease, 3 (1):
  • [47] Mass spectrometry methods to study protein-metabolite interactions
    Guo, Hongbo
    Peng, Hui
    Emili, Andrew
    EXPERT OPINION ON DRUG DISCOVERY, 2017, 12 (12) : 1271 - 1280
  • [48] Protein associations and protein-metabolite interactions with depressive symptoms and the p-factor
    Whipp, Alyce M.
    Drouard, Gabin
    Rose, Richard J.
    Pulkkinen, Lea
    Kaprio, Jaakko
    TRANSLATIONAL PSYCHIATRY, 2025, 15 (01):
  • [49] DAPPER: a data-mining resource for protein-protein interactions
    Haider, Syed
    Lipinszki, Zoltan
    Przewloka, Marcin R.
    Ladak, Yaseen
    D'Avino, Pier Paolo
    Kimata, Yuu
    Lio, Pietro
    Glover, David M.
    BIODATA MINING, 2015, 8
  • [50] DAPPER: a data-mining resource for protein-protein interactions
    Syed Haider
    Zoltan Lipinszki
    Marcin R. Przewloka
    Yaseen Ladak
    Pier Paolo D’Avino
    Yuu Kimata
    Pietro Lio’
    David M. Glover
    BioData Mining, 8