On viscosity solutions of path-dependent Hamilton-Jacobi-Bellman-Isaacs equations for fractional-order systems

被引:0
|
作者
Gomoyunov, M. I. [1 ,2 ]
机构
[1] Russian Acad Sci, NN Krasovskii Inst Math & Mech, Ural Branch, 16 S Kovalevskaya Str, Ekaterinburg 620108, Russia
[2] Ural Fed Univ, 19 Mira Str, Ekaterinburg 620002, Russia
基金
俄罗斯科学基金会;
关键词
Differential game; Caputo fractional derivative; Value functional; Path-dependent Hamilton-Jacobi equation; Fractional coinvariant derivatives; Viscosity solution; STOCHASTIC-CONTROL;
D O I
10.1016/j.jde.2024.04.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a two-person zero-sum differential game for a dynamical system described by a Caputo fractional differential equation of order alpha is an element of (0, 1) and a Bolza cost functional. The differential game is associated to the Cauchy problem for the path-dependent Hamilton-Jacobi-Bellman-Isaacs equation with so-called fractional coinvariant derivatives of order alpha and the corresponding right-end boundary condition. A notion of a viscosity solution of the Cauchy problem is introduced, and the value functional of the differential game is characterized as a unique viscosity solution of this problem. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:335 / 362
页数:28
相关论文
共 50 条
  • [21] DYNAMIC PROGRAMMING PRINCIPLE AND HAMILTON-JACOBI-BELLMAN EQUATIONS FOR FRACTIONAL-ORDER SYSTEMS
    Gomoyunov, Mikhail, I
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (06) : 3185 - 3211
  • [22] Path-Dependent Hamilton–Jacobi Equations: The Minimax Solutions Revised
    Mikhail I. Gomoyunov
    Nikolai Yu. Lukoyanov
    Anton R. Plaksin
    Applied Mathematics & Optimization, 2021, 84 : 1087 - 1117
  • [23] A convergence theorem for Crandall-Lions viscosity solutions to path-dependent Hamilton-Jacobi-Bellman PDEs
    Criens, David
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [24] Path-dependent Hamilton-Jacobi-Bellman equations related to controlled stochastic functional differential systems
    Ji, Shaolin
    Wang, Lin
    Yang, Shuzhen
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (01): : 109 - 120
  • [25] Recursive stochastic differential games with non-Lipschitzian generators and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equation
    Wang, Guangchen
    Xing, Zhuangzhuang
    arXiv,
  • [26] Path-Dependent Hamilton-Jacobi Equations: The Minimax Solutions Revised
    Gomoyunov, Mikhail I.
    Lukoyanov, Nikolai Yu.
    Plaksin, Anton R.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S1087 - S1117
  • [27] VISCOSITY SOLUTIONS OF STOCHASTIC HAMILTON-JACOBI-BELLMAN EQUATIONS
    Qiu, Jinniao
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (05) : 3708 - 3730
  • [28] ON THE SINGULARITIES OF THE VISCOSITY SOLUTIONS TO HAMILTON-JACOBI-BELLMAN EQUATIONS
    CANNARSA, P
    SONER, HM
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (03) : 501 - 524
  • [29] ZERO-SUM GAMES FOR VOLTERRA INTEGRAL EQUATIONS AND VISCOSITY SOLUTIONS OF PATH-DEPENDENT HAMILTON-JACOBI EQUATIONS
    Gomoyunov, Mikhail I.
    arXiv,
  • [30] Viscosity Solutions of Stochastic Hamilton-Jacobi-Bellman Equations∗
    Qiu, Jinniao
    arXiv, 2017,