Uniaxial Compressive Strength Prediction for Rock Material in Deep Mine Using Boosting-Based Machine Learning Methods and Optimization Algorithms

被引:8
|
作者
Zhao, Junjie [1 ]
Li, Diyuan [1 ]
Jiang, Jingtai [1 ]
Luo, Pingkuang [1 ]
机构
[1] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Uniaxial compression strength; strength prediction; machine learning; optimization algorithm; P-WAVE; INDEX; MODEL; HARDNESS; MODULUS;
D O I
10.32604/cmes.2024.046960
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditional laboratory tests for measuring rock uniaxial compressive strength (UCS) are tedious and timeconsuming. There is a pressing need for more effective methods to determine rock UCS, especially in deep mining environments under high in-situ stress. Thus, this study aims to develop an advanced model for predicting the UCS of rock material in deep mining environments by combining three boosting-based machine learning methods with four optimization algorithms. For this purpose, the Lead-Zinc mine in Southwest China is considered as the case study. Rock density, P-wave velocity, and point load strength index are used as input variables, and UCS is regarded as the output. Subsequently, twelve hybrid predictive models are obtained. Root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and the proportion of the mean absolute percentage error less than 20% (A-20) are selected as the evaluation metrics. Experimental results showed that the hybrid model consisting of the extreme gradient boosting method and the artificial bee colony algorithm (XGBoostABC) achieved satisfactory results on the training dataset and exhibited the best generalization performance on the testing dataset. The values of R2, A-20, RMSE, and MAE on the training dataset are 0.98, 1.0, 3.11 MPa, and 2.23 MPa, respectively. The highest values of R2 and A-20 (0.93 and 0.96), and the smallest RMSE and MAE values of 4.78 MPa and 3.76 MPa, are observed on the testing dataset. The proposed hybrid model can be considered a reliable and effective method for predicting rock UCS in deep mines.
引用
收藏
页码:275 / 304
页数:30
相关论文
共 50 条
  • [21] Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
    Ahmad, Ayaz
    Ahmad, Waqas
    Chaiyasarn, Krisada
    Ostrowski, Krzysztof Adam
    Aslam, Fahid
    Zajdel, Paulina
    Joyklad, Panuwat
    POLYMERS, 2021, 13 (19)
  • [22] Machine learning for prediction of the uniaxial compressive strength within carbonate rocks
    Abdelhedi, Mohamed
    Jabbar, Rateb
    Ben Said, Ahmed
    Fetais, Noora
    Abbes, Chedly
    EARTH SCIENCE INFORMATICS, 2023, 16 (2) : 1473 - 1487
  • [23] Machine learning for prediction of the uniaxial compressive strength within carbonate rocks
    Mohamed Abdelhedi
    Rateb Jabbar
    Ahmed Ben Said
    Noora Fetais
    Chedly Abbes
    Earth Science Informatics, 2023, 16 : 1473 - 1487
  • [24] Application of Gradient Boosting Machine Learning Algorithms to Predict Uniaxial Compressive Strength of Soft Sedimentary Rocks at Thar Coalfield
    Shahani, Niaz Muhammad
    Kamran, Muhammad
    Zheng, Xigui
    Liu, Cancan
    Guo, Xiaowei
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [25] Gradient Boosting-Based Machine Learning Methods in Real Estate Market Forecasting
    Fedorov, Nikita
    Petrichenko, Yulia
    PROCEEDINGS OF THE 8TH SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGIES FOR INTELLIGENT DECISION MAKING SUPPORT (ITIDS 2020), 2020, 174 : 203 - 208
  • [26] Prediction of Unconfined Compressive Strength of Stabilized Sand Using Machine Learning Methods
    Zhao, Qinggang
    Shi, Yan
    INDIAN GEOTECHNICAL JOURNAL, 2025, 55 (01) : 315 - 332
  • [27] Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods
    Candelaria, Ma. Doreen Esplana
    Kee, Seong-Hoon
    Lee, Kang-Seok
    MATERIALS, 2022, 15 (05)
  • [28] Prediction of Uniaxial Compressive Strength in Rocks Based on Extreme Learning Machine Improved with Metaheuristic Algorithm
    Qiu, Junbo
    Yin, Xin
    Pan, Yucong
    Wang, Xinyu
    Zhang, Min
    MATHEMATICS, 2022, 10 (19)
  • [29] A novel approach for prediction of groundwater quality using gradient boosting-based algorithms
    Raheja H.
    Goel A.
    Pal M.
    ISH Journal of Hydraulic Engineering, 2024, 30 (03) : 281 - 292
  • [30] Concrete compressive strength prediction using an explainable boosting machine model
    Liu, Gaoyang
    Sun, Bochao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18