Bayesian mixture modelling with ranked set samples

被引:0
|
作者
Alvandi, Amirhossein [1 ]
Omidvar, Sedigheh [2 ]
Hatefi, Armin [3 ]
Jozani, Mohammad Jafari [4 ]
Ozturk, Omer [5 ]
Nematollahi, Nader [2 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA USA
[2] Allameh Tabatabai Univ, Dept Stat, Tehran, Iran
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF, Canada
[4] Univ Manitoba, Dept Stat, Winnipeg, MB, Canada
[5] Ohio State Univ, Dept Stat, Columbus, OH USA
基金
加拿大自然科学与工程研究理事会;
关键词
bone mineral data; EM algorithm; finite mixture models; Gibbs sampling; imperfect ranking; metropolis-Hastings; misplacement probability model; ranked set sampling; OSTEOPOROSIS-RELATED FRACTURES; ECONOMIC BURDEN; DISTRIBUTIONS; INFORMATION; LIKELIHOOD; DIAGNOSIS; WOMEN; RISK;
D O I
10.1002/sim.10144
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the Bayesian estimation of the parameters of a finite mixture model from independent order statistics arising from imperfect ranked set sampling designs. As a cost-effective method, ranked set sampling enables us to incorporate easily attainable characteristics, as ranking information, into data collection and Bayesian estimation. To handle the special structure of the ranked set samples, we develop a Bayesian estimation approach exploiting the Expectation-Maximization (EM) algorithm in estimating the ranking parameters and Metropolis within Gibbs Sampling to estimate the parameters of the underlying mixture model. Our findings show that the proposed RSS-based Bayesian estimation method outperforms the commonly used Bayesian counterpart using simple random sampling. The developed method is finally applied to estimate the bone disorder status of women aged 50 and older.
引用
收藏
页码:3723 / 3741
页数:19
相关论文
共 50 条
  • [21] Model based inference using ranked set samples
    Ozturk, Omer
    Kavlak, Konul Bayramoglu
    SURVEY METHODOLOGY, 2018, 44 (01) : 1 - 16
  • [22] RANKED SET SAMPLING WITH UNEQUAL SAMPLES AND UNEQUAL REPLICATIONS
    Bhoj, Dinesh S.
    Kushary, Debashis
    PAKISTAN JOURNAL OF STATISTICS, 2014, 30 (03): : 361 - 372
  • [23] Group sequential methods based on ranked set samples
    Hussein, A.
    Muttlak, H. A.
    Al-Sawi, E.
    STATISTICAL PAPERS, 2013, 54 (03) : 547 - 562
  • [24] Multiple observers ranked set samples for shrinkage estimators
    Pearce, Andrew David
    Hatefi, Armin
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (14) : 2779 - 2811
  • [25] A bootstrap test for symmetry based on ranked set samples
    Drikvandi, Reza
    Modarres, Reza
    Jalilian, Abdullah H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (04) : 1807 - 1814
  • [26] Inference on a distribution function from ranked set samples
    Lutz Dümbgen
    Ehsan Zamanzade
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 157 - 185
  • [27] Robust Bayesian mixture modelling
    Svensén, M
    Bishop, CM
    NEUROCOMPUTING, 2005, 64 : 235 - 252
  • [28] Regression estimators in extreme and median ranked set samples
    Muttlak, HA
    JOURNAL OF APPLIED STATISTICS, 2001, 28 (08) : 1003 - 1017
  • [29] Symmetric smoothed bootstrap methods for ranked set samples
    Yamaguchi, Hikaru
    Murakami, Hidetoshi
    JOURNAL OF NONPARAMETRIC STATISTICS, 2021, 33 (3-4) : 435 - 463
  • [30] Kernel Density Estimator From Ranked Set Samples
    Lim, Johan
    Chen, Min
    Park, Sangun
    Wang, Xinlei
    Stokes, Lynne
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (10-12) : 2156 - 2168