Toward high-fidelity quantum information processing and quantum simulation with spin qubits and phonons

被引:3
|
作者
Arrazola, I. [1 ,2 ]
Minoguchi, Y. [2 ,3 ]
Lemonde, M. -a. [4 ]
Sipahigil, A. [5 ,6 ,7 ]
Rabl, P. [2 ,8 ,9 ,10 ]
机构
[1] Univ Autonoma Madrid, Inst Fis Teor, UAM CSIC, Madrid 28049, Spain
[2] TU Wien, Vienna Ctr Quantum Sci & Technol, Atominst, A-1040 Vienna, Austria
[3] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat IQOQI Vienna, A-1090 Vienna, Austria
[4] Nord Quant, Sherbrooke, PQ J1J 2E2, Canada
[5] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[8] Bayer Akad Wissensch, Walther Meissner Inst, D-85748 Garching, Germany
[9] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[10] Munich Ctr Quantum Sci & Technol MCQST, D-80799 Munich, Germany
关键词
All Open Access; Green;
D O I
10.1103/PhysRevB.110.045419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the implementation of high-fidelity, phonon-mediated gate operations and quantum simulation schemes for spin qubits associated with silicon vacancy centers in diamond. Specifically, we show how the application of continuous dynamical decoupling techniques can substantially boost the coherence of the qubit states while increasing at the same time the variety of effective spin models that can be implemented in this way. Based on realistic models and detailed numerical simulations, we demonstrate that this decoupling technique can suppress gate errors by more than two orders of magnitude and enable gate infidelities below similar to 10 - 4 for experimentally relevant noise parameters. Therefore, when generalized to phononic lattices with arrays of implanted defect centers, this approach offers a realistic path toward moderate- and large-scale quantum devices with spins and phonons at a level of control that is competitive with other leading quantum-technology platforms.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] High Fidelity Quantum Gates with Vibrational Qubits
    Berrios, Eduardo
    Gruebele, Martin
    Shyshlov, Dmytro
    Wang, Lei
    Babikov, Dmitri
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (46): : 11347 - 11354
  • [32] High-fidelity initialization of long-lived quantum dot hole spin qubits by reduced fine-structure splitting
    Brash, A. J.
    Martins, L. M. P. P.
    Liu, F.
    Quilter, J. H.
    Ramsay, A. J.
    Skolnick, M. S.
    Fox, A. M.
    PHYSICAL REVIEW B, 2015, 92 (12)
  • [33] High-fidelity universal quantum gates through quantum interference
    Li, Ran
    Gaitan, Frank
    QUANTUM INFORMATION AND COMPUTATION VIII, 2010, 7702
  • [34] Proposal for High-Fidelity Quantum Simulation Using a Hybrid Dressed State
    Cai, Jianming
    Cohen, Itsik
    Retzker, Alex
    Plenio, Martin B.
    PHYSICAL REVIEW LETTERS, 2015, 115 (16)
  • [35] Fast high-fidelity geometric quantum control with quantum brachistochrones
    Dong, Yang
    Feng, Ce
    Zheng, Yu
    Chen, Xiang-Dong
    Guo, Guang-Can
    Sun, Fang-Wen
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [36] High-fidelity entangling gates for quantum-dot hybrid qubits based on exchange interactions
    Yang, Yuan-Chi
    Coppersmith, S. N.
    Friesen, Mark
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [37] Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing
    Lu, Hsuan-Hao
    Lukens, Joseph M.
    Peters, Nicholas A.
    Odele, Ogaga D.
    Leaird, Daniel E.
    Weiner, Andrew M.
    Lougovski, Pavel
    PHYSICAL REVIEW LETTERS, 2018, 120 (03)
  • [38] High-fidelity initialization and control of multiple nuclear spin qubits in silicon
    Gorman, Samuel K.
    Simmons, Michelle Y.
    NATURE NANOTECHNOLOGY, 2024, 19 (05) : 584 - 585
  • [39] High-fidelity geometric gate for silicon-based spin qubits
    Zhang, Chengxian
    Chen, Tao
    Li, Sai
    Wang, Xin
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [40] Identifying quantum states capable of high-fidelity transmission over a spin chain
    Wang, Zhao-Ming
    Wu, Lian-Ao
    Bishop, C. Allen
    Gu, Yong-Jian
    Byrd, Mark S.
    PHYSICAL REVIEW A, 2013, 88 (03):