Toward high-fidelity quantum information processing and quantum simulation with spin qubits and phonons

被引:3
|
作者
Arrazola, I. [1 ,2 ]
Minoguchi, Y. [2 ,3 ]
Lemonde, M. -a. [4 ]
Sipahigil, A. [5 ,6 ,7 ]
Rabl, P. [2 ,8 ,9 ,10 ]
机构
[1] Univ Autonoma Madrid, Inst Fis Teor, UAM CSIC, Madrid 28049, Spain
[2] TU Wien, Vienna Ctr Quantum Sci & Technol, Atominst, A-1040 Vienna, Austria
[3] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat IQOQI Vienna, A-1090 Vienna, Austria
[4] Nord Quant, Sherbrooke, PQ J1J 2E2, Canada
[5] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[8] Bayer Akad Wissensch, Walther Meissner Inst, D-85748 Garching, Germany
[9] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[10] Munich Ctr Quantum Sci & Technol MCQST, D-80799 Munich, Germany
关键词
All Open Access; Green;
D O I
10.1103/PhysRevB.110.045419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the implementation of high-fidelity, phonon-mediated gate operations and quantum simulation schemes for spin qubits associated with silicon vacancy centers in diamond. Specifically, we show how the application of continuous dynamical decoupling techniques can substantially boost the coherence of the qubit states while increasing at the same time the variety of effective spin models that can be implemented in this way. Based on realistic models and detailed numerical simulations, we demonstrate that this decoupling technique can suppress gate errors by more than two orders of magnitude and enable gate infidelities below similar to 10 - 4 for experimentally relevant noise parameters. Therefore, when generalized to phononic lattices with arrays of implanted defect centers, this approach offers a realistic path toward moderate- and large-scale quantum devices with spins and phonons at a level of control that is competitive with other leading quantum-technology platforms.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] High-fidelity gates in quantum dot spin qubits
    Koh, Teck Seng
    Coppersmith, S. N.
    Friesen, Mark
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (49) : 19695 - 19700
  • [2] High-fidelity entangling gate for double-quantum-dot spin qubits
    Nichol, John M.
    Orona, Lucas A.
    Harvey, Shannon P.
    Fallahi, Saeed
    Gardner, Geoffrey C.
    Manfra, Michael J.
    Yacoby, Amir
    NPJ QUANTUM INFORMATION, 2017, 3
  • [3] High-fidelity entangling gate for double-quantum-dot spin qubits
    John M. Nichol
    Lucas A. Orona
    Shannon P. Harvey
    Saeed Fallahi
    Geoffrey C. Gardner
    Michael J. Manfra
    Amir Yacoby
    npj Quantum Information, 3
  • [4] High-fidelity composite quantum gates for Raman qubits
    Torosov, Boyan T.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [5] Smooth composite pulses for high-fidelity quantum information processing
    Torosov, Boyan T.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [6] Fast high-fidelity entangling gates for spin qubits in Si double quantum dots
    Calderon-Vargas, F. A.
    Barron, George S.
    Deng, Xiu-Hao
    Sigillito, A. J.
    Barnes, Edwin
    Economou, Sophia E.
    PHYSICAL REVIEW B, 2019, 100 (03)
  • [7] Pursuing high-fidelity control of spin qubits in natural Si/SiGe quantum dot
    Wang, Ning
    Wang, Shao-Min
    Zhang, Run-Ze
    Kang, Jia-Min
    Lu, Wen-Long
    Li, Hai-Ou
    Cao, Gang
    Wang, Bao-Chuan
    Guo, Guo-Ping
    APPLIED PHYSICS LETTERS, 2024, 125 (20)
  • [8] High-fidelity quantum operations on superconducting qubits in the presence of noise
    Kerman, Andrew J.
    Oliver, William D.
    PHYSICAL REVIEW LETTERS, 2008, 101 (07)
  • [9] Fast high-fidelity parity measurement of spin qubits in quantum dots using modulated pulses
    Zhu, Xing-Yu
    Tu, Tao
    Guo, Guang-Can
    Li, Chuan-Feng
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [10] Fast and High-Fidelity State Preparation and Measurement in Triple-Quantum-Dot Spin Qubits
    Blumoff, Jacob Z.
    Pan, Andrew S.
    Keating, Tyler E.
    Andrews, Reed W.
    Barnes, David W.
    Brecht, Teresa L.
    Croke, Edward T.
    Euliss, Larken E.
    Fast, Jacob A.
    Jackson, Clayton A. C.
    Jones, Aaron M.
    Kerckhoff, Joseph
    Lanza, Robert K.
    Raach, Kate
    Thomas, Bryan J.
    Velunta, Roland
    Weinstein, Aaron J.
    Ladd, Thaddeus D.
    Eng, Kevin
    Borselli, Matthew G.
    Hunter, Andrew T.
    Rakher, Matthew T.
    PRX QUANTUM, 2022, 3 (01):