X-ray imaging and electron temperature evolution in laser-driven magnetic reconnection experiments at the national ignition facility

被引:0
|
作者
Valenzuela-Villaseca, Vicente [1 ]
Molina, Jacob M. [1 ,2 ]
Schaeffer, Derek B. [3 ]
Malko, Sophia [2 ]
Griff-McMahon, Jesse [1 ,2 ]
Lezhnin, Kirill [2 ]
Rosenberg, Michael J. [4 ]
Hu, S. X. [4 ]
Kalantar, Dan [5 ]
Trosseille, Clement [5 ]
Park, Hye-Sook [5 ]
Remington, Bruce A. [5 ]
Fiksel, Gennady [6 ]
Uzdensky, Dmitri [7 ]
Bhattacharjee, Amitava [1 ,2 ]
Fox, William [1 ,2 ]
机构
[1] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[4] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[6] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA
[7] Univ Colorado, Ctr Integrated Plasma Studies, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
ACCELERATION;
D O I
10.1063/5.0213598
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present results from x-ray imaging of high-aspect-ratio magnetic reconnection experiments driven at the National Ignition Facility. Two parallel, self-magnetized, elongated laser-driven plumes are produced by tiling 40 laser beams. A magnetic reconnection layer is formed by the collision of the plumes. A gated x-ray framing pinhole camera with micro-channel plate detector produces multiple images through various filters of the formation and evolution of both the plumes and current sheet. As the diagnostic integrates plasma self-emission along the line of sight, two-dimensional electron temperature maps < Te >(Y) are constructed by taking the ratio of intensity of these images obtained with different filters. The plumes have a characteristic temperature < Te >(Y )= 240 +/- 20 eV at 2 ns after the initial laser irradiation and exhibit a slow cooling up to 4 ns. The reconnection layer forms at 3 ns with a temperature < Te >(Y )= 280 +/- 50 eV as the result of the collision of the plumes. The error bars of the plumes and current sheet temperatures separate at 4 ns, showing the heating of the current sheet from colder inflows. Using a semi-analytical model, we survey various heating mechanisms in the current sheet. We find that reconnection energy conversion would dominate at low density ( n(e )less than or similar to 7 x 10(18) cm(-3)) and electron-ion collisional drag at high-density ( greater than or similar to 10(19) cm(-3)).
引用
收藏
页数:19
相关论文
共 50 条
  • [11] X-ray source characterization and sample heating on x-ray diffraction experiments at the National Ignition Facility
    Krygier, A.
    Wehrenberg, C. E.
    Bernier, J. V.
    Clarke, S.
    Coleman, A. L.
    Coppari, F.
    Duffy, T. S.
    Gorman, M. G.
    Hohenberger, M.
    Kalantar, D.
    Kemp, G. E.
    Khan, S. F.
    Krauland, C.
    Kraus, R. G.
    Lazicki, A.
    MacDonald, M. J.
    MacPhee, A. G.
    Marley, E.
    Marshall, M. C.
    May, M.
    McNaney, J. M.
    Millot, M.
    Ping, Y.
    Poole, P. L.
    Rygg, J. R.
    Schneider, M.
    Sio, H.
    Stoupin, S.
    Swift, D.
    Yeamans, C.
    Zobrist, T.
    Smith, R. F.
    Eggert, J. H.
    PHYSICS OF PLASMAS, 2022, 29 (10)
  • [12] X-Ray Penumbral Imaging Diagnostic Developments at the National Ignition Facility
    Bachmann, B.
    Abu-Shawareb, H.
    Alexander, N.
    Ayers, J.
    Bailey, C. G.
    Bell, P.
    Benedetti, L. R.
    Bradley, D.
    Collins, G.
    Divol, L.
    Doeppner, T.
    Felker, S.
    Field, J.
    Forsman, A.
    Galbraith, J. D.
    Hardy, C. M.
    Hilsabeck, T.
    Izumi, N.
    Jarrott, C.
    Kilkenny, J.
    Kramer, S.
    Landen, O. L.
    Ma, T.
    MacPhee, A.
    Masters, N.
    Nagel, S. R.
    Pak, A.
    Patel, P.
    Pickworth, L. A.
    Ralph, J. E.
    Reed, C.
    Rygg, J. R.
    Thorn, D. B.
    TARGET DIAGNOSTICS PHYSICS AND ENGINEERING FOR INERTIAL CONFINEMENT FUSION VI, 2017, 10390
  • [13] Ignition X-ray imager for laser-fusion research at the national ignition facility
    Tommasini, R.
    Phillips, T. W.
    Koch, J. A.
    JOURNAL DE PHYSIQUE IV, 2006, 133 : 935 - 937
  • [14] X-ray diffraction at the National Ignition Facility
    Rygg, J. R.
    Smith, R. F.
    Lazicki, A. E.
    Braun, D. G.
    Fratanduono, D. E.
    Kraus, R. G.
    McNaney, J. M.
    Swift, D. C.
    Wehrenberg, C. E.
    Coppari, F.
    Ahmed, M. F.
    Barrios, M. A.
    Blobaum, K. J. M.
    Collins, G. W.
    Cook, A. L.
    Di Nicola, P.
    Dzenitis, E. G.
    Gonzales, S.
    Heidl, B. F.
    Hohenberger, M.
    House, A.
    Izumi, N.
    Kalantar, D. H.
    Khan, S. F.
    Kohut, T. R.
    Kumar, C.
    Masters, N. D.
    Polsin, D. N.
    Regan, S. P.
    Smith, C. A.
    Vignes, R. M.
    Wall, M. A.
    Ward, J.
    Wark, J. S.
    Zobrist, T. L.
    Arsenlis, A.
    Eggert, J. H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (04):
  • [15] A hardened gated x-ray imaging diagnostic for inertial confinement fusion experiments at the National Ignition Facility
    Glenn, S.
    Koch, J.
    Bradley, D. K.
    Izumi, N.
    Bell, P.
    Holder, J.
    Stone, G.
    Prasad, R.
    MacKinnon, A.
    Springer, P.
    Landen, O. L.
    Kyrala, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10):
  • [16] X-ray conversion efficiency in vacuum hohlraum experiments at the National Ignition Facility
    Olson, R. E.
    Suter, L. J.
    Kline, J. L.
    Callahan, D. A.
    Rosen, M. D.
    Dixit, S. N.
    Landen, O. L.
    Meezan, N. B.
    Moody, J. D.
    Thomas, C. A.
    Warrick, A.
    Widmann, K.
    Williams, E. A.
    Glenzer, S. H.
    PHYSICS OF PLASMAS, 2012, 19 (05)
  • [17] Applications and Results of X-Ray Spectroscopy in Implosion Experiments on the National Ignition Facility
    Epstein, R.
    Regan, S. P.
    Hammel, B. A.
    Suter, L. J.
    Scott, H. A.
    Barrios, M. A.
    Bradley, D. K.
    Callahan, D. A.
    Cerjan, C.
    Collins, G. W.
    Dixit, S. N.
    Doppner, T.
    Edwards, M. J.
    Farley, D. R.
    Fournier, K. B.
    Glenn, S.
    Glenzer, S. H.
    Golovkin, I. E.
    Hamza, A.
    Hicks, D. G.
    Izumi, N.
    Jones, O. S.
    Key, M. H.
    Kilkenny, J. D.
    Kline, J. L.
    Kyrala, G. A.
    Landen, O. L.
    Ma, T.
    MacFarlane, J. J.
    Mackinnon, A. J.
    Mancini, R. C.
    McCrory, R. L.
    Meyerhofer, D. D.
    Meezan, N. B.
    Nikroo, A.
    Park, H. -S.
    Patel, P. K.
    Ralph, J. E.
    Remington, B. A.
    Sangster, T. C.
    Smalyuk, V. A.
    Springer, P. T.
    Town, R. P. J.
    Tucker, J. L.
    ATOMIC PROCESSES IN PLASMAS (APIP 2016), 2017, 1811
  • [18] Development of CCD cameras for soft X-ray imaging at the National Ignition Facility
    Teruya, A. T.
    Palmer, N. E.
    Schneider, M. B.
    Bell, P. M.
    Sims, G.
    Toerne, K.
    Rodenburg, K.
    Croft, M.
    Haugh, M. J.
    Charest, M. R.
    Romano, E. D.
    Jacoby, K. D.
    TARGET DIAGNOSTICS PHYSICS AND ENGINEERING FOR INERTIAL CONFINEMENT FUSION II, 2013, 8850
  • [19] Measurement of jet evolution and electron energy spectrum during the process of laser-driven magnetic reconnection
    Zhang Kai
    Zhong Jia-Yong
    Pei Xiao-Xing
    Li Yu-Tong
    Youichi, Sakawa
    Wei Hui-Gang
    Yuan Da-Wei
    Li Fang
    Han Bo
    Wang Chen
    He Hao
    Yin Chuan-Lei
    Liao Guo-Qian
    Fang Yuan
    Yang Su
    Yuan Xiao-Hui
    Liang Gui-Yun
    Wang Fei-Lu
    Zhu Jian-Qiang
    Ding Yong-Kun
    Zhang Jie
    Zhao Gang
    ACTA PHYSICA SINICA, 2015, 64 (16)
  • [20] DEVELOPING HIGH-TEMPERATURE LASER-DRIVEN HALF HOHLRAUMS FOR HIGH-ENERGY-DENSITY PHYSICS EXPERIMENTS AT THE NATIONAL IGNITION FACILITY
    Moore, A. S.
    Morton, J.
    Guymer, T.
    Bazin, N.
    Bentley, C.
    Stevenson, M.
    Kline, J. L.
    Keiter, P.
    Taccetti, M.
    Mussack, K.
    Peterson, B.
    Schmidt, D. W.
    Hamilton, C.
    Lanier, N.
    Workman, J.
    FUSION SCIENCE AND TECHNOLOGY, 2013, 63 (02) : 76 - 81