EdgeFM: Leveraging Foundation Model for Open-set Learning on the Edge

被引:3
|
作者
Yang, Bufang [1 ]
He, Lixing [1 ]
Ling, Neiwen [1 ]
Yan, Zhenyu [1 ]
Xing, Guoliang [1 ]
Shuai, Xian [2 ]
Ren, Xiaozhe [2 ]
Jiang, Xin [2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Huawei Technol, Noahs Ark Lab, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Foundation Models; Edge Computing; Offloading; Edge-cloud Collaborative System; Open-set Recognition; Internet of Things;
D O I
10.1145/3625687.3625793
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep Learning (DL) models have been widely deployed on IoT devices with the help of advancements in DL algorithms and chips. However, the limited resources of edge devices make these ondevice DL models hard to be generalizable to diverse environments and tasks. Although the recently emerged foundation models (FMs) show impressive generalization power, how to effectively leverage the rich knowledge of FMs on resource-limited edge devices is still not explored. In this paper, we propose EdgeFM, a novel edge-cloud cooperative system with open-set recognition capability. EdgeFM selectively uploads unlabeled data to query the FM on the cloud and customizes the specific knowledge and architectures for edge models. Meanwhile, EdgeFM conducts dynamic model switching at run-time taking into account both data uncertainty and dynamic network variations, which ensures the accuracy always close to the original FM. We implement EdgeFM using two FMs on two edge platforms. We evaluate EdgeFM on three public datasets and two self-collected datasets. Results show that EdgeFM can reduce the end-to-end latency up to 3.2x and achieve 34.3% accuracy increase compared with the baseline.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 50 条
  • [41] Learning Generalized Representations for Open-Set Temporal Action Localization
    Hu, Junshan
    Zhuang, Liansheng
    Dong, Weisong
    Ge, Shiming
    Wang, Shafei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1987 - 1996
  • [42] Deep metric learning method for open-set iris recognition
    Huo, Guang
    Li, Ruyuan
    Lou, Jianlou
    Yu, Xiaolu
    Wang, Jiajun
    He, Xinlei
    Wang, Yue
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (03) : 33016
  • [43] Simplifying open-set video domain adaptation with contrastive learning
    Zara, Giacomo
    da Costa, Victor Guilherme Turrisi
    Roy, Subhankar
    Rota, Paolo
    Ricci, Elisa
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241
  • [44] Transmitter Identification With Contrastive Learning in Incremental Open-Set Recognition
    Zhang, Xiaoxu
    Huang, Yonghui
    Lin, Meiyan
    Tian, Ye
    An, Junshe
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 4693 - 4711
  • [45] An Open-Set Modulation Recognition Scheme With Deep Representation Learning
    Chen, Yanghong
    Xu, Xiaodong
    Qin, Xiaowei
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (03) : 851 - 855
  • [46] Self-Paced Learning for Open-Set Domain Adaptation
    Liu X.
    Zhou Y.
    Zhou T.
    Qin J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (08): : 1711 - 1726
  • [47] Contrastive learning based open-set recognition with unknown score
    Zhou, Yuan
    Fang, Songyu
    Li, Shuoshi
    Wang, Boyu
    Kung, Sun -Yuan
    KNOWLEDGE-BASED SYSTEMS, 2024, 296
  • [48] Open-Set Automatic Modulation Recognition Based on Circular Prototype Learning and Denoising Diffusion Model
    Niu, Huiying
    Xie, Xun
    Cheng, Xiaojing
    Bai, Jing
    ELECTRONICS, 2025, 14 (03):
  • [49] TASK-AGNOSTIC OPEN-SET PROTOTYPE FOR FEW-SHOT OPEN-SET RECOGNITION
    Kim, Byeonggeun
    Lee, Jun-Tae
    Shim, Kyuhong
    Chang, Simyung
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 31 - 35
  • [50] A novel deep metric learning model for imbalanced fault diagnosis and toward open-set classification
    Wang, Cunjun
    Xin, Cun
    Xu, Zili
    KNOWLEDGE-BASED SYSTEMS, 2021, 220