Zero-Shot Translation of Attention Patterns in VQA Models to Natural Language

被引:0
|
作者
Salewski, Leonard [1 ]
Koepke, A. Sophia [1 ]
Lensch, Hendrik P. A. [1 ]
Akata, Zeynep [1 ,2 ]
机构
[1] Univ Tubingen, Tubingen, Germany
[2] MPI Intelligent Syst, Tubingen, Germany
来源
关键词
Zero-Shot Translation of Attention Patterns; VQA;
D O I
10.1007/978-3-031-54605-1_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Converting a model's internals to text can yield human-understandable insights about the model. Inspired by the recent success of training-free approaches for image captioning, we propose ZS-A2T, a zero-shot framework that translates the transformer attention of a given model into natural language without requiring any training. We consider this in the context of Visual Question Answering (VQA). ZS-A2T builds on a pre-trained large language model (LLM), which receives a task prompt, question, and predicted answer, as inputs. The LLM is guided to select tokens which describe the regions in the input image that the VQA model attended to. Crucially, we determine this similarity by exploiting the text-image matching capabilities of the underlying VQA model. Our framework does not require any training and allows the drop-in replacement of different guiding sources (e.g. attribution instead of attention maps), or language models. We evaluate this novel task on textual explanation datasets for VQA, giving state-of-the-art performances for the zero-shot setting on GQA-REX and VQA-X. Our code is available here.
引用
收藏
页码:378 / 393
页数:16
相关论文
共 50 条
  • [21] Examining Zero-Shot Vulnerability Repair with Large Language Models
    Pearce, Hammond
    Tan, Benjamin
    Ahmad, Baleegh
    Karri, Ramesh
    Dolan-Gavitt, Brendan
    2023 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP, 2023, : 2339 - 2356
  • [22] Examining Zero-Shot Vulnerability Repair with Large Language Models
    Pearce, Hammond
    Tan, Benjamin
    Ahmad, Baleegh
    Karri, Ramesh
    Dolan-Gavitt, Brendan
    2023 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP, 2023, : 2339 - 2356
  • [23] Revisiting Large Language Models as Zero-shot Relation Extractors
    Li, Guozheng
    Wang, Peng
    Ke, Wenjun
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 6877 - 6892
  • [24] Generating Training Data with Language Models: Towards Zero-Shot Language Understanding
    Meng, Yu
    Huang, Jiaxin
    Zhang, Yu
    Han, Jiawei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [25] Zero-Shot Recommendation as Language Modeling
    Sileo, Damien
    Vossen, Wout
    Raymaekers, Robbe
    ADVANCES IN INFORMATION RETRIEVAL, PT II, 2022, 13186 : 223 - 230
  • [26] Towards Zero-shot Language Modeling
    Ponti, Edoardo M.
    Vulic, Ivan
    Cotterell, Ryan
    Reichart, Roi
    Korhonen, Anna
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 2900 - +
  • [27] Effective Guidance in Zero-Shot Multilingual Translation via Multiple Language Prototypes
    Zheng, Yafang
    Lin, Lei
    Yuan, Yuxuan
    Shi, Xiaodong
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT VI, 2024, 14452 : 226 - 238
  • [28] MEDAGENTS: Large Language Models as Collaborators for Zero-shot Medical Reasoning
    Tang, Xiangru
    Zou, Anni
    Zhang, Zhuosheng
    Li, Ziming
    Zhao, Yilun
    Zhang, Xingyao
    Cohen, Arman
    Gerstein, Mark
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 599 - 621
  • [29] Attention Biasing and Context Augmentation for Zero-Shot Control of Encoder-Decoder Transformers for Natural Language Generation
    Hazarika, Devamanyu
    Namazifar, Mahdi
    Hakkani-Tur, Dilek
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10738 - 10748
  • [30] Label Propagation for Zero-shot Classification with Vision-Language Models
    Stojnic, Vladan
    Kalantidis, Yannis
    Tolias, Giorgos
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 23209 - 23218