Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction

被引:9
|
作者
Zhu, Qixiang [1 ,2 ]
Zhou, Zheng [1 ,2 ]
Li, Yasong [1 ,2 ]
Yan, Ruqiang [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
关键词
Contrastive learning; Health representation learning; Bidirectional long short-term memory; Remaining useful life (RUL) prediction; MACHINERY;
D O I
10.1016/j.ress.2024.110210
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Remaining useful life (RUL) prediction is of vital significance in prognostics health management tasks. Due to powerful learning capabilities, deep learning methods, particularly long short-term memory (LSTM) have been widely applied in RUL prediction. However, many existing deep learning approaches overlook the inherent ordered relationship between samples in the direct mapping from sliced data to RUL pattern. To capture the faithful and ordered health representation of a given system, a Contrastive Bidirectional LSTM-enabled Health Representation Learning (CBHRL) framework is proposed. Firstly, the supervised contrastive regression loss (SupCR) is implemented to extract continuous health representation. The SupCR is designed to rank the similarity among health representations from different samples, prompting them highly correlated with linear RUL label. Among the process of contrastive learning, the series odd-even decomposition (SOED) method is devised to construct multi-view degradation data, which improves generalization ability. Finally, since the health representation is constructed on basis of similarity, a new similarity prediction method is proposed as the complement of regression prediction method. Experimental results show the health representations extracted by CBHRL achieve improved ratio ranging from a minimum of 17.19% to a maximum of 291.30% in monotonicity, smoothness and trendability.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Prediction of the remaining useful life of a milling machine using machine learning
    Al-Refaie, Abbas
    Al-atrash, Majd
    Lepkova, Natalija
    METHODSX, 2025, 14
  • [42] Unsupervised Transfer Learning for Remaining Useful Life Prediction of Elevator Brake
    Jiang Y.
    Hu H.
    Yin Y.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2021, 55 (11): : 1408 - 1416
  • [43] Remaining Useful Battery Life Prediction for UAVs based on Machine Learning
    Mansouri, Sina Sharif
    Karvelis, Petros
    Georgoulas, George
    Nikolakopoulos, George
    IFAC PAPERSONLINE, 2017, 50 (01): : 4727 - 4732
  • [44] Deep Transfer Learning Remaining Useful Life Prediction of Different Bearings
    Xu, Juan
    Fang, Mengting
    Zhao, Weihua
    Fan, Yuqi
    Ding, Xu
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [45] Incremental learning methods for remaining useful life prediction models of machinery
    Dong J.
    Qiu Q.
    Guan C.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (04): : 1397 - 1407
  • [46] Bearing Remaining Useful Life Prediction Method Based on Transfer Learning
    Wang X.-G.
    Han K.-Z.
    Wang C.
    Li L.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (05): : 665 - 672
  • [47] A survey on few-shot learning for remaining useful life prediction
    Mo, Renpeng
    Zhou, Han
    Yin, Hongpeng
    Si, Xiaosheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 257
  • [48] Remaining Useful Life Prediction using Deep Learning Approaches: A Review
    Wang, Youdao
    Zhao, Yifan
    Addepalli, Sri
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THROUGH-LIFE ENGINEERING SERVICES (TESCONF 2019), 2020, 49 : 81 - 88
  • [49] PREDICTION OF REMAINING USEFUL LIFE WITH HELP OF DEEP LEARNING MODELS WITH REGULARIZATION
    Gritsyuk, Katerina M.
    Gritsyuk, Vera I.
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2024, 16 (03): : 3 - 12
  • [50] A Hybrid Prognostics Deep Learning Model for Remaining Useful Life Prediction
    Xie, Zhiyuan
    Du, Shichang
    Lv, Jun
    Deng, Yafei
    Jia, Shiyao
    ELECTRONICS, 2021, 10 (01) : 1 - 31