Entropy Normalization SAC-Based Task Offloading for UAV-Assisted Mobile-Edge Computing

被引:2
|
作者
Deng, Tan [1 ]
Wang, Yanping [1 ]
Li, Jin [1 ]
Cao, Ronghui [1 ]
Gu, Yongtong [1 ]
Hu, Jinming [1 ]
Tang, Xiaoyong [1 ]
Huang, Mingfeng [1 ]
Liu, Wenzheng [1 ]
Li, Shixue [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 15期
基金
中国国家自然科学基金;
关键词
Task analysis; Autonomous aerial vehicles; Energy consumption; Delays; Servers; Optimization; Internet of Things; Computation offloading; deep reinforcement learning (DRL); mobile-edge computing (MEC); Quality of Service (QoS); unmanned aerial vehicle (UAV);
D O I
10.1109/JIOT.2024.3395276
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the advantages of maneuverability and low cost, unmanned aerial vehicles (UAVs) are widely deployed in mobile-edge computing (MEC) as micro servers to provide computing service. However, tasks usually require a large amount of energy and have strict time constraints, while the battery energy and endurance of UAVs are limited. Therefore, energy consumption and delay have become key issues in such architectures. To address this issue, an entropy normalized soft actor-critic (ENSAC) computation offloading algorithm is proposed in this article, aiming to minimize the weighted sum of task offloading delay and energy consumption. In ENSAC, we formulate the task offloading problem as a Markov decision process (MDP). Considering the nonconvexity, high-dimensional state space, and continuous action space of this problem, the ENSAC algorithm fully combines deviation strategy and maximum entropy reinforcement learning and designs a system utility function under entropy normalization as a reward function, thus ensuring fairness in weighted energy consumption and delay. What is more, the ENSAC algorithm also considers UAV trajectory planning, task offloading ratio, and power allocation in the UAV-assisted MEC system. Therefore, compared with previous methods, the ENSAC algorithm has stronger stability, better exploration performance, and can handle more complex environments and larger action space. Finally, extensive experiments demonstrate that, in both energy-saving and delay-sensitive scenarios, the ENSAC algorithm can quickly converge to the optimal solution while maintaining stability. Compared with four benchmark algorithms, it reduces the total system cost by 52.73%.
引用
收藏
页码:26220 / 26233
页数:14
相关论文
共 50 条
  • [31] Two Time-Scale Joint Service Caching and Task Offloading for UAV-assisted Mobile Edge Computing
    Zhou, Ruiting
    Wu, Xiaoyi
    Tan, Haisheng
    Zhang, Renli
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2022), 2022, : 1189 - 1198
  • [32] Evolutionary Multi-Objective Reinforcement Learning Based Trajectory Control and Task Offloading in UAV-Assisted Mobile Edge Computing
    Song, Fuhong
    Xing, Huanlai
    Wang, Xinhan
    Luo, Shouxi
    Dai, Penglin
    Xiao, Zhiwen
    Zhao, Bowen
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (12) : 7387 - 7405
  • [33] Distributed Task Offloading in Mobile-Edge Computing With Virtual Machines
    Lee, Hongju
    Choi, Sung Il
    Lee, Sang Hyun
    Debbah, Merouane
    Lee, Inkyu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 24083 - 24097
  • [34] Learning to Coordinate in Mobile-Edge Computing for Decentralized Task Offloading
    Zhang, Bolei
    Tang, Bin
    Xiao, Fu
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (01) : 893 - 903
  • [35] Task Offloading and Resource Allocation in Mobile-Edge Computing System
    Kan, Te-Yi
    Chiang, Yao
    Wei, Hung-Yu
    2018 27TH WIRELESS AND OPTICAL COMMUNICATION CONFERENCE (WOCC), 2018, : 129 - 132
  • [36] Learning Based Channel Allocation and Task Offloading in Temporary UAV-Assisted Vehicular Edge Computing Networks
    Yang, Chao
    Liu, Baichuan
    Li, Haoyu
    Li, Bo
    Xie, Kan
    Xie, Shengli
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) : 9884 - 9895
  • [37] Joint Offloading and Resource Allocation of UAV-assisted Mobile Edge Computing with Delay Constraints
    Tan, Tiao
    Zhao, Ming
    Zhu, Yusen
    Zeng, Zhiwen
    2021 IEEE 41ST INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS (ICDCSW 2021), 2021, : 21 - 26
  • [38] A Novel Framework for Mobile-Edge Computing by Optimizing Task Offloading
    Naouri, Abdenacer
    Wu, Hangxing
    Nouri, Nabil Abdelkader
    Dhelim, Sahraoui
    Ning, Huansheng
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16): : 13065 - 13076
  • [39] Optimal Task-UAV-Edge Matching for Computation Offloading in UAV Assisted Mobile Edge Computing
    Kim, Kitae
    Hong, Choong Seen
    2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,
  • [40] Distributed User Association and Computation Offloading in UAV-Assisted Mobile Edge Computing Systems
    Wang, Tong
    You, Chuanchuan
    IEEE ACCESS, 2024, 12 : 63548 - 63567