Optimal stochastic gradient descent algorithm for filtering

被引:1
|
作者
Turali, M. Yigit [1 ]
Koc, Ali T. [1 ]
Kozat, Suleyman S. [1 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkiye
关键词
Learning rate; Linear filtering; Optimization; Stochastic gradient descent; PREDICTION;
D O I
10.1016/j.dsp.2024.104731
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stochastic Gradient Descent (SGD) is a fundamental optimization technique in machine learning, due to its efficiency in handling large-scale data. Unlike typical SGD applications, which rely on stochastic approximations, this work explores the convergence properties of SGD from a deterministic perspective. We address the crucial aspect of learning rate settings, a common obstacle in optimizing SGD performance, particularly in complex environments. In contrast to traditional methods that often provide convergence results based on statistical expectations (which are usually not justified), our approach introduces universally applicable learning rates. These rates ensure that a model trained with SGD matches the performance of the best linear filter asymptotically, applicable irrespective of the data sequence length and independent of statistical assumptions about the data. By establishing learning rates that scale as mu = O(1/t), we offer a solution that sidesteps the need for prior data knowledge, a prevalent limitation in real-world applications. To this end, we provide a robust framework for SGD's application across varied settings, guaranteeing convergence results that hold under both deterministic and stochastic scenarios without any underlying assumptions.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Adaptive Gradient Estimation Stochastic Parallel Gradient Descent Algorithm for Laser Beam Cleanup
    Ma, Shiqing
    Yang, Ping
    Lai, Boheng
    Su, Chunxuan
    Zhao, Wang
    Yang, Kangjian
    Jin, Ruiyan
    Cheng, Tao
    Xu, Bing
    PHOTONICS, 2021, 8 (05)
  • [32] Unforgeability in Stochastic Gradient Descent
    Baluta, Teodora
    Nikolic, Ivica
    Jain, Racchit
    Aggarwal, Divesh
    Saxena, Prateek
    PROCEEDINGS OF THE 2023 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2023, 2023, : 1138 - 1152
  • [33] Preconditioned Stochastic Gradient Descent
    Li, Xi-Lin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 1454 - 1466
  • [34] Stochastic Reweighted Gradient Descent
    El Hanchi, Ayoub
    Stephens, David A.
    Maddison, Chris J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [35] Stochastic gradient descent tricks
    Bottou, Léon
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 421 - 436
  • [36] Byzantine Stochastic Gradient Descent
    Alistarh, Dan
    Allen-Zhu, Zeyuan
    Li, Jerry
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [37] A large-scale stochastic gradient descent algorithm over a graphon
    Chen, Yan
    Li, Tao
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4806 - 4811
  • [38] An improved stochastic gradient descent algorithm based on Renyi differential privacy
    Cheng, XianFu
    Yao, YanQing
    Zhang, Liying
    Liu, Ao
    Li, Zhoujun
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10694 - 10714
  • [39] Almost sure convergence rates of stochastic proximal gradient descent algorithm
    Liang, Yuqing
    Xu, Dongpo
    OPTIMIZATION, 2024, 73 (08) : 2413 - 2446
  • [40] A Stochastic Gradient Descent Algorithm for Antenna Tilt Optimization in Cellular Networks
    Liu, Yaxi
    Wei Huangfu
    Zhang, Haijun
    Long, Keping
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,