Generative Modeling of Sparse Approximate Inverse Preconditioners

被引:0
|
作者
Li, Mou [1 ]
Wang, He [2 ]
Jimack, Peter K. [1 ]
机构
[1] Univ Leeds, Leeds LS2 9JT, W Yorkshire, England
[2] UCL, London WC1E 6BT, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Deep learning; Sparse matrices; Preconditioning; Elliptic partial differential equations; Finite element methods; ALGORITHM;
D O I
10.1007/978-3-031-63759-9_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new deep learning paradigm for the generation of sparse approximate inverse (SPAI) preconditioners for matrix systems arising from the mesh-based discretization of elliptic differential operators. Our approach is based upon the observation that matrices generated in this manner are not arbitrary, but inherit properties from differential operators that they discretize. Consequently, we seek to represent a learnable distribution of high-performance preconditioners from a low-dimensional subspace through a carefully-designed autoencoder, which is able to generate SPAI preconditioners for these systems. The concept has been implemented on a variety of finite element discretizations of second- and fourth-order elliptic partial differential equations with highly promising results.
引用
收藏
页码:378 / 392
页数:15
相关论文
共 50 条
  • [21] Sparse approximate-inverse preconditioners using norm-minimization techniques
    Gould, NIM
    Scott, JA
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (02): : 605 - 625
  • [22] The effect of orderings on sparse approximate inverse preconditioners for non-symmetric problems
    Flórez, E
    García, MD
    González, L
    Montero, G
    ADVANCES IN ENGINEERING SOFTWARE, 2002, 33 (7-10) : 611 - 619
  • [23] Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners
    Yeremin A.Yu.
    Kolotilina L.Yu.
    Nikishin A.A.
    Journal of Mathematical Sciences, 2000, 101 (4) : 3237 - 3254
  • [24] Parallel implementation and practical use of sparse approximate inverse preconditioners with a priori sparsity patterns
    Chow, E
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2001, 15 (01): : 56 - 74
  • [25] Approximate inverse preconditioners with adaptive dropping
    Kopal, Jiri
    Rozloznik, Miroslav
    Tuma, Miroslav
    ADVANCES IN ENGINEERING SOFTWARE, 2015, 84 : 13 - 20
  • [26] A robust AINV-type method for constructing sparse approximate inverse preconditioners in factored form
    Kharchenko, SA
    Kolotilina, LY
    Nikishin, AA
    Yeremin, AY
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2001, 8 (03) : 165 - 179
  • [27] Numerical experiments with two approximate inverse preconditioners
    Michele Benzi
    Miroslav Tůma
    BIT Numerical Mathematics, 1998, 38 : 234 - 241
  • [28] Approximate inverse preconditioners for the conjugate gradient method
    Honma, C
    Saleem, M
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (04) : 495 - 521
  • [29] Approximate Inverse Preconditioners for solving Toeplitz matrices
    Huang, Zhuohong
    Huang, Tingzhu
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 259 - 262
  • [30] Numerical experiments with two approximate inverse preconditioners
    Benzi, M
    Tuma, M
    BIT, 1998, 38 (02): : 234 - 241