Generative Modeling of Sparse Approximate Inverse Preconditioners

被引:0
|
作者
Li, Mou [1 ]
Wang, He [2 ]
Jimack, Peter K. [1 ]
机构
[1] Univ Leeds, Leeds LS2 9JT, W Yorkshire, England
[2] UCL, London WC1E 6BT, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Deep learning; Sparse matrices; Preconditioning; Elliptic partial differential equations; Finite element methods; ALGORITHM;
D O I
10.1007/978-3-031-63759-9_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new deep learning paradigm for the generation of sparse approximate inverse (SPAI) preconditioners for matrix systems arising from the mesh-based discretization of elliptic differential operators. Our approach is based upon the observation that matrices generated in this manner are not arbitrary, but inherit properties from differential operators that they discretize. Consequently, we seek to represent a learnable distribution of high-performance preconditioners from a low-dimensional subspace through a carefully-designed autoencoder, which is able to generate SPAI preconditioners for these systems. The concept has been implemented on a variety of finite element discretizations of second- and fourth-order elliptic partial differential equations with highly promising results.
引用
收藏
页码:378 / 392
页数:15
相关论文
共 50 条
  • [1] Wavelet sparse approximate inverse preconditioners
    Chan, TF
    Tang, WP
    Wan, WL
    BIT, 1997, 37 (03): : 644 - 660
  • [2] Wavelet sparse approximate inverse preconditioners
    T. F. Chan
    W. P. Tang
    W. L. Wan
    BIT Numerical Mathematics, 1997, 37 : 644 - 660
  • [3] Orderings for factorized sparse approximate inverse preconditioners
    Benzi, M
    Tuma, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05): : 1851 - 1868
  • [4] A comparative study of sparse approximate inverse preconditioners
    Benzi, M
    Tuma, M
    APPLIED NUMERICAL MATHEMATICS, 1999, 30 (2-3) : 305 - 340
  • [5] Approximate inverse preconditioners via sparse-sparse iterations
    Chow, E
    Saad, Y
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03): : 995 - 1023
  • [6] Effect of ordering on the performance of sparse approximate inverse preconditioners
    Flórez, E
    García, MD
    González, L
    Montero, G
    FINITE ELEMENTS: TECHNIQUES AND DEVELOPMENTS, 2000, : 25 - 34
  • [7] Sparse Approximate Inverse Preconditioners for Iterative Solvers on GPUs
    Lukash, Mykola
    Rupp, Karl
    Selberherr, Siegfried
    HIGH PERFORMANCE COMPUTING SYMPOSIUM 2012 (HPC 2012), 2012, 44 (06): : 91 - 98
  • [8] Algorithm for sparse approximate inverse preconditioners in the conjugate gradient method
    Labutin, Ilya B.
    Surodina, Irina V.
    Reliable Computing, 2013, 19 (01) : 120 - 126
  • [9] Sparse approximate inverse preconditioners on high performance GPU platforms
    Bertaccini, Daniele
    Filippone, Salvatore
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (03) : 693 - 711
  • [10] An analysis of sparse approximate inverse preconditioners for boundary integral equations
    Chen, K
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 22 (04) : 1058 - 1078