Point Transformer with Federated Learning for Predicting Breast Cancer HER2 Status from Hematoxylin and Eosin-Stained Whole Slide Images

被引:0
|
作者
Li, Bao [1 ,2 ]
Liu, Zhenyu [2 ]
Shao, Lizhi [2 ]
Qiu, Bensheng [1 ]
Bu, Hong [3 ]
Tian, Jie [1 ,2 ,4 ]
机构
[1] Univ Sci & Technol China, Ctr Biomed Imaging, Hefei, Peoples R China
[2] Chinese Acad Sci, Beijing Key Lab Mol Imaging, Inst Automat, CAS Key Lab Mol Imaging, Beijing, Peoples R China
[3] Sichuan Univ, West China Hosp, Dept Pathol, Chengdu, Peoples R China
[4] Beihang Univ, Sch Engn Med, Key Lab Big Data Based Precis Med, Minist Ind & Informat Technol, Beijing, Peoples R China
来源
THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4 | 2024年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Directly predicting human epidermal growth factor receptor 2 (HER2) status from widely available hematoxylin and eosin (HE)-stained whole slide images (WSIs) can reduce technical costs and expedite treatment selection. Accurately predicting HER2 requires large collections of multi-site WSIs. Federated learning enables collaborative training of these WSIs without gigabyte-size WSIs transportation and data privacy concerns. However, federated learning encounters challenges in addressing label imbalance in multi-site WSIs from the real world. Moreover, existing WSI classification methods cannot simultaneously exploit local context information and long-range dependencies in the site-end feature representation of federated learning. To address these issues, we present a point transformer with federated learning for multi-site HER2 status prediction from HE-stained WSIs. Our approach incorporates two novel designs. We propose a dynamic label distribution strategy and an auxiliary classifier, which helps to establish a well-initialized model and mitigate label distribution variations across sites. Additionally, we propose a farthest cosine sampling based on cosine distance. It can sample the most distinctive features and capture the long-range dependencies. Extensive experiments and analysis show that our method achieves state-of-the-art performance at four sites with a total of 2687 WSIs. Furthermore, we demonstrate that our model can generalize to two unseen sites with 229 WSIs. Code is available at: https://github.com/boyden/PointTransformerFL
引用
收藏
页码:3000 / 3008
页数:9
相关论文
共 50 条
  • [21] Improving the performance of multi-stage HER2 breast cancer detection in hematoxylin-eosin images based on ensemble deep learning
    Pateel, G. P.
    Senapati, Kedarnath
    Pandey, Abhishek Kumar
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [22] Validity of whole slide images for scoring HER2 chromogenic in situ hybridisation in breast cancer
    Al-Janabi, Shaimaa
    Horstman, Anja
    van Slooten, Henk-Jan
    Kuijpers, Chantal
    Lai-A-Fat, Clifton
    van Diest, Paul J.
    Jiwa, Mehdi
    JOURNAL OF CLINICAL PATHOLOGY, 2016, 69 (11) : 992 - 997
  • [23] Artificial intelligence models deployed at scale on hematoxylin and eosin-stained whole slide images reveal stage-dependent collagen composition in metabolic dysfunction-associated steatohepatitis
    Gerardin, Ylaine
    Patel, Neel
    Murray, Lara
    Stanford-Moore, Adam
    Brosnan-Cashman, Jacqueline
    Xu, Jun
    Boyette, Lisa
    Glass, Benjamin
    Watkins, Timothy R.
    Billin, Andrew N.
    Egger, Robert
    JOURNAL OF HEPATOLOGY, 2024, 80 : S585 - S586
  • [24] HER2 challenge contest: a detailed assessment of automated HER2 scoring algorithms in whole slide images of breast cancer tissues
    Qaiser, Talha
    Mukherjee, Abhik
    Reddy, Chaitanya P. B.
    Munugoti, Sai D.
    Tallam, Vamsi
    Pitkaaho, Tomi
    Lehtimaki, Taina
    Naughton, Thomas
    Berseth, Matt
    Pedraza, Anibal
    Mukundan, Ramakrishnan
    Smith, Matthew
    Bhalerao, Abhir
    Rodner, Erik
    Simon, Marcel
    Denzler, Joachim
    Huang, Chao-Hui
    Bueno, Gloria
    Snead, David
    Ellis, Ian O.
    Ilyas, Mohammad
    Rajpoot, Nasir
    HISTOPATHOLOGY, 2018, 72 (02) : 227 - 238
  • [25] Evaluation of AI-assisted HER2 scoring in breast carcinoma-stained whole-slide images.
    Thomas, Florian
    Cormier, Benedicte
    Bossard, Celine
    Poulet, Bruno
    Guinaudeau, Emmanuelle
    Salhi, Yahia
    Chokri, Ilham
    Jossic, Frederique
    Lambros, Laetitia
    De Pinieux, Isabelle
    Thanguturi, Soum
    Chetritt, Jerome
    Salhi, Sanae
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [26] Training and evaluation of an AI-assisted HER2 scoring in breast carcinoma-stained whole-slide images
    Cormier, B.
    Bossard, C.
    Salhi, Y.
    Thomas, F.
    Poulet, B.
    Guinaudeau, E.
    Lambros, L.
    Ilham, C.
    Jossic, F.
    de Pinieux, I.
    Thanguturi, S.
    Salhi, S.
    Chetritt, J.
    VIRCHOWS ARCHIV, 2024, 485 : S58 - S58
  • [27] Training and Validating an Artificial Intelligence Algorithm for HER2 Assessment in Breast Carcinoma-Stained Whole-Slide Images
    Thomas, Florian
    Salhi, Yahia
    Bossard, Celine
    Cormier, Benedicte
    Poulet, Bruno
    Lambros, Laetitia
    Chokri, Ilham
    Jossic, Frederique
    Thanguturi, Soumanth
    Salhi, Sanae
    Chetritt, Jerome
    de Pinieux, Isabelle
    LABORATORY INVESTIGATION, 2024, 104 (03) : S278 - S279
  • [28] Generalization of a deep learning model for HER2 status predictions on H&E-stained whole slide images derived from 3 neoadjuvant clinical studies
    Haegele, M.
    Mueller, K-R.
    Denkert, C.
    Schneeweiss, A.
    Sinn, B. V.
    Untch, M.
    Van Mackelenbergh, M. T.
    Jackisch, C.
    Nekljudova, V.
    Karn, T.
    Alber, M.
    Marme, F.
    Schem, C.
    Stickeler, E.
    Fasching, P. A.
    Mueller, V.
    Weber, K. E.
    Lederer, B.
    Loibl, S.
    Klauschen, F.
    ANNALS OF ONCOLOGY, 2022, 33 (07) : S572 - S573
  • [29] Artificial Intelligence for Predicting HER2 Status of Gastric Cancer Based on Whole-Slide Histopathology Images: A Retrospective Multicenter Study
    Liao, Yuhan
    Chen, Xinhua
    Hu, Shupeng
    Chen, Bing
    Zhuo, Xinghua
    Xu, Hao
    Wu, Xiaojin
    Zeng, Xiaofeng
    Zeng, Huimin
    Zhang, Donghui
    Zhi, Yunfei
    Zhao, Liang
    ADVANCED SCIENCE, 2025,
  • [30] SlideGraph+ : Whole slide image level graphs to predict HER2 status in breast cancer
    Lu, Wenqi
    Toss, Michael
    Dawood, Muhammad
    Rakha, Emad
    Rajpoot, Nasir
    Minhas, Fayyaz
    MEDICAL IMAGE ANALYSIS, 2022, 80