Toward the Tradeoffs Between Privacy, Fairness and Utility in Federated Learning

被引:0
|
作者
Sun, Kangkang [1 ]
Zhang, Xiaojin [2 ]
Lin, Xi [1 ]
Li, Gaolei [1 ]
Wang, Jing [1 ]
Li, Jianhua [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai Key Lab Integrated Adm Technol Informat, Shanghai, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fair and Private Federated Learning; Differential Privacy; Privacy Protection;
D O I
10.1007/978-981-99-9614-8_8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) is a novel privacy-protection distributed machine learning paradigm that guarantees user privacy and prevents the risk of data leakage due to the advantage of the client's local training. Researchers have struggled to design fair FL systems that ensure fairness of results. However, the interplay between fairness and privacy has been less studied. Increasing the fairness of FL systems can have an impact on user privacy, while an increase in user privacy can affect fairness. In this work, on the client side, we use the fairness metrics, such as Demographic Parity (DemP), Equalized Odds (EOs), and Disparate Impact (DI), to construct the local fair model. To protect the privacy of the client model, we propose a privacy-protection fairness FL method. The results show that the accuracy of the fair model with privacy increases because privacy breaks the constraints of the fairness metrics. In our experiments, we conclude the relationship between privacy, fairness and utility, and there is a tradeoff between these.
引用
收藏
页码:118 / 132
页数:15
相关论文
共 50 条
  • [21] Blockchain-Based Practical and Privacy-Preserving Federated Learning with Verifiable Fairness
    Zhang, Yitian
    Tang, Yuming
    Zhang, Zijian
    Li, Meng
    Li, Zhen
    Khan, Salabat
    Chen, Huaping
    Cheng, Guoqiang
    MATHEMATICS, 2023, 11 (05)
  • [22] Toward Secure Weighted Aggregation for Privacy-Preserving Federated Learning
    He, Yunlong
    Yu, Jia
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 3475 - 3488
  • [23] Utility Fairness for the Differentially Private Federated-Learning-Based Wireless IoT Networks
    Alvi, Sheeraz A.
    Hong, Yi
    Durrani, Salman
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (19): : 19398 - 19413
  • [24] Secure and Privacy-Preserving Federated Learning via Co-Utility
    Domingo-Ferrer, Josep
    Blanco-Justicia, Alberto
    Manjon, Jesus
    Sanchez, David
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (05): : 3988 - 4000
  • [25] Heterogeneous Differential-Private Federated Learning: Trading Privacy for Utility Truthfully
    Lin, Xi
    Wu, Jun
    Li, Jianhua
    Sang, Chao
    Hu, Shiyan
    Deen, M. Jamal
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (06) : 5113 - 5129
  • [26] Fairness in Trustworthy Federated Learning: A Survey
    Chen H.-Y.
    Li Y.-D.
    Zhang H.-L.
    Chen N.-Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (10): : 2985 - 3010
  • [27] Fairness and accuracy in horizontal federated learning
    Huang, Wei
    Li, Tianrui
    Wang, Dexian
    Du, Shengdong
    Zhang, Junbo
    Huang, Tianqiang
    INFORMATION SCIENCES, 2022, 589 (170-185) : 170 - 185
  • [28] Privacy-Utility Tradeoffs Against Limited Adversaries
    Duan, Xiaoming
    Xu, Zhe
    Yan, Rui
    Topcu, Ufuk
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (01) : 519 - 526
  • [29] Exploring the Relationship Between Privacy and Utility in Mobile Health: Algorithm Development and Validation via Simulations of Federated Learning, Differential Privacy, and External Attacks
    Shen, Alexander
    Francisco, Luke
    Sen, Srijan
    Tewari, Ambuj
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
  • [30] Robust Privacy-Utility Tradeoffs Under Differential Privacy and Hamming Distortion
    Kalantari, Kousha
    Sankar, Lalitha
    Sarwate, Anand D.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (11) : 2816 - 2830