Highly Efficient and Stable Intermediate-Temperature Solid Oxide Fuel Cells Using PrCo0.5Ni0.5O3-δ Cathode

被引:0
|
作者
Huang, Wan [1 ,2 ]
Tian, Chuan [1 ,3 ]
Meng, Junling [1 ,2 ]
Xu, Na [1 ,2 ]
Zhang, Yao [1 ,2 ]
Zhao, Lina [1 ,2 ]
Zhong, Haixia [3 ]
机构
[1] Jilin Normal Univ, Key Lab Preparat & Applicat Environm Friendly Mat, Minist Educ, Changchun 130103, Peoples R China
[2] Jilin Normal Univ, Dept Chem, Siping 136000, Peoples R China
[3] Chinese Acad Sci, State Key Lab Rare Earth Resource Utilizat, Changchun Inst Appl Chem, Changchun 130022, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 26期
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION REACTION; ELECTRONIC-STRUCTURE; PEROVSKITE OXIDES; STABILITY; CATALYST; 1ST-PRINCIPLES; PERFORMANCE; SPECTRA;
D O I
10.1021/acs.jpcc.4c03549
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oxygen reduction reaction is crucial for the development of intermediate/low-temperature solid oxide fuel cells (SOFCs), thus the development of cathode materials with high catalytic activity and stability is still a great challenge for the commercialization of SOFC. In this study, a series of La1-x PrxCo0.5Ni0.5O3-delta(x = 0.5, 0.75, and 1.0) perovskite oxides were prepared as oxygen reduction reaction catalysts for SOFC. First, the polycrystalline powders were synthesized by a Pechini method, and the crystal structure was confirmed as orthorhombic symmetry with Pbnm (No. 62) space group. Second, it was found that PrCo0.5Ni0.5O3-delta (PCN) presents the best electrochemical performance among the three compounds. The polarization impedance of PCN was 0.0383 Omega cm(2) and the peak power density reached 1.47 W cm(2) using wetted hydrogen as fuel and air as the oxidant measured at 850 degrees C. Meanwhile, the single cell with PCN as the cathode could stably work for 100 h at 750 degrees C without damping. Finally, combined with the first-principles calculations, it was revealed that the doping of Pr ion can effectively reduce oxygen vacancy formation energy and mainly changed the valence states of Co and Ni ions at B-site. Therefore, PCN is expected to be a promising cathode material for SOFC.
引用
收藏
页码:10826 / 10836
页数:11
相关论文
共 50 条
  • [41] High Power Plasma Sprayed Intermediate Temperature Solid Oxide Fuel Cells with Sm0.5Sr0.5CoO3-δ Cathode
    Hwang, Chang-sing
    Tsai, Chun-Huang
    Chang, Chun-Liang
    Yu, Jen-Feng
    Nien, Sheng-Hui
    IUMRS INTERNATIONAL CONFERENCE IN ASIA 2011, 2012, 36 : 81 - 87
  • [42] Conductivity and electrochemical performance of (Ba0.5Sr0.5)0.8La0.2CoO3-δ cathode for intermediate-temperature solid oxide fuel cell
    Hung, I-Ming
    Liang, Chen-Yu
    Ciou, Chun-Jing
    Lee, Yu-Chen
    CERAMICS INTERNATIONAL, 2010, 36 (06) : 1937 - 1943
  • [43] Structural, Electrical, and Electrochemical Characteristics of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln=Pr, Sm, Gd) as Cathode Materials in Intermediate-Temperature Solid Oxide Fuel Cells
    Jeong, Donghwi
    Jun, Areum
    Ju, Young-Wan
    Hyodo, Junji
    Shin, Jeeyoung
    Ishihara, Tatsumi
    Lim, Tak-Hyoung
    Kim, Guntae
    ENERGY TECHNOLOGY, 2017, 5 (08) : 1337 - 1343
  • [44] LaCoO3-δ coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for intermediate temperature solid oxide fuel cells
    Qiu, Peng
    Li, Jin
    Jia, Lichao
    Chi, Bo
    Pu, Jian
    Li, Jian
    Chen, Fanglin
    ELECTROCHIMICA ACTA, 2019, 319 : 981 - 989
  • [45] Highly efficient and stable intermediate- temperature solid oxide fuel cells using Bi-deficient perovskite cathode
    Meng, Junling
    Xu, Na
    Wang, Xuxu
    Yao, Fen
    Tian, Chuan
    Liu, Xiaojuan
    Zhao, Lina
    Xu, Zhanlin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (86) : 33620 - 33632
  • [46] A novel dual phase BaCe0.5Fe0.5O3-δ cathode with high oxygen electrocatalysis activity for intermediate temperature solid oxide fuel cells
    Zhu, Lin
    Hong, Tao
    Xu, Chenxi
    Cheng, Jigui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) : 15400 - 15408
  • [47] LaSrMnCoO5+δ as cathode for intermediate-temperature solid oxide fuel cells
    Zhou, Qingjun
    Wei, W. C. J.
    Guo, Yajie
    Jia, Dan
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 19 : 36 - 38
  • [48] Performance analysis of LiAl0.5Co0.5O2 nanosheets for intermediate-temperature fuel cells
    Paydar, Sara
    Peng, Jin
    Huang, Liwen
    Shi, Quan
    Akbar, Nabeela
    Islam, Quazi Arif
    Muhammad, Akbar
    Xing, Yueming
    Kim, Jung-Sik
    Wu, Yan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (52) : 26478 - 26488
  • [49] Influence of layer numbers on the structural and electrical performance of cobalt-free SrFe0.5Ti0.5O3-δ cathode for intermediate-temperature solid oxide fuel cell application
    Baharuddin, N. A.
    Yusoff, W. N. A. Wan
    Muchtar, A.
    Somalu, M. R.
    Samat, A. Abdul
    Anwar, M.
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND GREEN TECHNOLOGY 2018, 2019, 268
  • [50] A highly stable Co3O4-GDC nanocomposite cathode for intermediate temperature solid oxide fuel cells
    Rehman, Saeed Ur
    Hassan, Muhammad Haseeb
    Batool, Syeda Youmnah
    Kim, Hye-Sung
    Song, Rak-Hyun
    Lim, Tak-Hyoung
    Hong, Jong-Eun
    Joh, Dong-Woo
    Park, Seok-Joo
    Lee, Seung-Bok
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 1242 - 1254