Scattering of solutions with group invariance for the fourth-order nonlinear Schrödinger equation

被引:0
|
作者
Komada, Koichi [1 ]
Masaki, Satoshi [2 ]
机构
[1] Ritsumeikan Univ, Ritsumeikan Global Innovat Res Org, Kusatsu, Shiga 5258577, Japan
[2] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
fourth-order nonlinear Schr & ouml; dinger equation; scattering theory; group invariance; profile decomposition; GLOBAL WELL-POSEDNESS; SCHRODINGER-EQUATION; BLOW-UP; DYNAMICS;
D O I
10.1088/1361-6544/ad5639
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the focusing, L 2-supercritical and H (center dot) 2 -subcritical fourth-order nonlinear Schr & ouml;dinger equations. We show the scattering of group-invariant solutions below the ground state threshold, under the hypothesis that the threshold for group-invariant solutions is less than a certain value.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] Global existence of odd solutions for the cubic fourth-order nonlinear Schrödinger equationsCubic fourth-order Schrödinger equationsN. Hayashi and P. I. Naumkin
    Nakao Hayashi
    Pavel I. Naumkin
    Nonlinear Differential Equations and Applications NoDEA, 2025, 32 (3)
  • [22] The fourth-order nonlinear Schrödinger limit for quantum Zakharov system
    Yung-Fu Fang
    Chi-Kun Lin
    Jun-Ichi Segata
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [23] Jacobi elliptic solutions, solitons and other solutions for the nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity
    Elsayed M. E. Zayed
    Abdul-Ghani Al-Nowehy
    The European Physical Journal Plus, 132
  • [24] Instability of single- and double-periodic waves in the fourth-order nonlinear Schrödinger equation
    N. Sinthuja
    S. Rajasekar
    M. Senthilvelan
    Nonlinear Dynamics, 2023, 111 : 16497 - 16513
  • [25] Split-step multisymplectic integrator for fourth-order Schrödinger equation with cubic nonlinear term
    Kong, Linghua
    Cao, Ying
    Wang, Lan
    Wan, Long
    Jisuan Wuli/Chinese Journal of Computational Physics, 2011, 28 (05): : 730 - 736
  • [26] Jacobian elliptic wave trains in fourth-order dispersive nonlinear Schrödinger equation and the modulational instability
    Raju T.S.
    Triki H.
    Optik, 2024, 302
  • [27] Numerical investigation of solitary-wave solutions for the nonlinear Schrödinger equation perturbed by third-order and negative fourth-order dispersion
    Melchert, Oliver
    Demircan, Ayhan
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [28] Localized wave solutions to coupled variable-coefficient fourth-order nonlinear Schrödinger equations
    Song, N.
    Guo, M. M.
    Liu, R.
    Ma, W. X.
    MODERN PHYSICS LETTERS A, 2024, 39 (09)
  • [29] Global well-posedness for nonlinear fourth-order Schrödinger equations
    Xiuyan Peng
    Yi Niu
    Jie Liu
    Mingyou Zhang
    Jihong Shen
    Boundary Value Problems, 2016
  • [30] Bright, dark, and periodic soliton solutions for the (2+1)-dimensional nonlinear Schrödinger equation with fourth-order nonlinearity and dispersion
    Ali, Khalid K.
    Mohamed, Mohamed S.
    Mehanna, M. S.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)