Frozen Language Model Helps ECG Zero-Shot Learning

被引:0
|
作者
Li, Jun [1 ]
Liu, Che [2 ,3 ]
Cheng, Sibo [3 ]
Arcucci, Rossella [2 ,3 ]
Hong, Shenda [4 ,5 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, Changchun, Peoples R China
[2] Imperial Coll London, Dept Earth Sci & Engn, London SW7 2AZ, England
[3] Imperial Coll London, Data Sci Inst, Dept Comp, London, England
[4] Peking Univ, Natl Inst Hlth Data Sci, Beijing, Peoples R China
[5] Peking Univ, Inst Med Technol, Hlth Sci Ctr, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Multimodal self-supervised learning; Zero-shot learning; Language model; ECG; Signal processing; MYOCARDIAL-INFARCTION; SIGNALS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The electrocardiogram (ECG) is one of the most commonly used non-invasive, convenient medical monitoring tools that assist in the clinical diagnosis of heart diseases. Recently, deep learning (DL) techniques, particularly self-supervised learning (SSL), have demonstrated great potential in the classification of ECG. SSL pre-training has achieved competitive performance with only a small amount of annotated data after fine-tuning. However, current SSL methods rely on the availability of annotated data and are unable to predict labels not existing in fine-tuning datasets. To address this challenge, we propose Multimodal ECG-Text Self-supervised pre-training (METS), the first work to utilize the auto-generated clinical reports to guide ECG SSL pre-training. We use a trainable ECG encoder and a frozen language model to embed paired ECG and automatically machine-generated clinical reports separately. The SSL aims to maximize the similarity between paired ECG and auto-generated report while minimize the similarity between ECG and other reports. In downstream classification tasks, METS achieves around 10% improvement in performance without using any annotated data via zero-shot classification, compared to other supervised and SSL baselines that rely on annotated data. Furthermore, METS achieves the highest recall and F1 scores on the MIT-BIH dataset, despite MIT-BIH containing different classes of ECG compared to the pre-trained dataset. The extensive experiments have demonstrated the advantages of using ECG-Text multimodal self-supervised learning in terms of generalizability, effectiveness, and efficiency.
引用
收藏
页码:402 / 415
页数:14
相关论文
共 50 条
  • [31] Zero-Shot Program Representation Learning
    Cui, Nan
    Jiang, Yuze
    Gu, Xiaodong
    Shen, Beijun
    30TH IEEE/ACM INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC 2022), 2022, : 60 - 70
  • [32] Research progress of zero-shot learning
    Sun, Xiaohong
    Gu, Jinan
    Sun, Hongying
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3600 - 3614
  • [33] Research progress of zero-shot learning
    Xiaohong Sun
    Jinan Gu
    Hongying Sun
    Applied Intelligence, 2021, 51 : 3600 - 3614
  • [34] Joint Dictionaries for Zero-Shot Learning
    Kolouri, Soheil
    Rostami, Mohammad
    Owechko, Yuri
    Kim, Kyungnam
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3431 - 3439
  • [35] Creativity Inspired Zero-Shot Learning
    Elhoseiny, Mohamed
    Elfeki, Mohamed
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5783 - 5792
  • [36] Synthesized Classifiers for Zero-Shot Learning
    Changpinyo, Soravit
    Chao, Wei-Lun
    Gong, Boqing
    Sha, Fei
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5327 - 5336
  • [37] Zero-Shot Learning With Transferred Samples
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Gao, Yue
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3277 - 3290
  • [38] LVQ Treatment for Zero-Shot Learning
    Ismailoglu, Firat
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2023, 31 (01) : 216 - 237
  • [39] Attribute subspaces for zero-shot learning
    Zhou, Lei
    Liu, Yang
    Bai, Xiao
    Li, Na
    Yu, Xiaohan
    Zhou, Jun
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2023, 144
  • [40] A review on multimodal zero-shot learning
    Cao, Weipeng
    Wu, Yuhao
    Sun, Yixuan
    Zhang, Haigang
    Ren, Jin
    Gu, Dujuan
    Wang, Xingkai
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (02)