High-Fidelity Spin Qubit Shuttling via Large Spin-Orbit Interactions

被引:5
|
作者
Bosco, Stefano [1 ,2 ,3 ]
Zou, Ji [1 ]
Loss, Daniel [1 ]
机构
[1] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[2] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
来源
PRX QUANTUM | 2024年 / 5卷 / 02期
基金
瑞士国家科学基金会;
关键词
QUANTUM PROCESSOR; LOGIC; GATE;
D O I
10.1103/PRXQuantum.5.020353
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Shuttling spins with high fidelity is a key requirement to scale up semiconducting quantum computers, enabling qubit entanglement over large distances and favoring the integration of control electronics on-chip. To decouple the spin from the unavoidable charge noise, state-of-the-art spin shuttlers try to minimize the inhomogeneity of the Zeeman field. However, this decoupling is challenging in otherwise promising quantum computing platforms such as hole spin qubits in silicon and germanium, characterized by a large spin-orbit interaction and an electrically tunable qubit frequency. In this work, we show that, surprisingly, the large inhomogeneity of the Zeeman field stabilizes the coherence of a moving spin state, thus also enabling high-fidelity shuttling in these systems. We relate this enhancement in fidelity to the deterministic dynamics of the spin that filters out the dominant low-frequency contributions of the charge noise. By simulating several different scenarios and noise sources, we show that this is a robust phenomenon generally occurring at large field inhomogeneity. By appropriately adjusting the motion of the quantum dot, we also design realistic protocols enabling faster and more coherent spin shuttling. Our findings are generally applicable to a wide range of setups and could pave the way toward large-scale quantum processors.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Spin-orbit interactions of transverse sound
    Shubo Wang
    Guanqing Zhang
    Xulong Wang
    Qing Tong
    Jensen Li
    Guancong Ma
    Nature Communications, 12
  • [32] Analytic propagators for spin-orbit interactions
    Hsu, Bailey C.
    Van Huele, Jean-Francois S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (47)
  • [33] Spin-orbit interactions of transverse sound
    Wang, Shubo
    Zhang, Guanqing
    Wang, Xulong
    Tong, Qing
    Li, Jensen
    Ma, Guancong
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [34] SIMILARITY BETWEEN SPIN-SPIN INTERACTIONS AND SPIN-ORBIT INTERACTIONS IN DIATOMIC MOLECULES
    KOVACS, I
    PHYSICAL REVIEW, 1962, 128 (02): : 663 - &
  • [35] SPIN-ORBIT INTERACTIONS IN MOLECULAR RADICALS
    GLARUM, SH
    JOURNAL OF CHEMICAL PHYSICS, 1963, 39 (11): : 3141 - &
  • [36] SPIN-ORBIT INTERACTIONS Hide and seek
    Partoens, Bart
    NATURE PHYSICS, 2014, 10 (05) : 333 - 334
  • [37] Spin-orbit interactions in vortex singularimetry
    Goette, Joerg B.
    Dennis, Mark R.
    SPINTRONICS VI, 2013, 8813
  • [38] Spin-Orbit Interactions in Osmium Complexes
    I. P. Asanov
    A. D. Fedorenko
    D. B. Vasilchenko
    M. A. Grebenkina
    A. N. Lavrov
    I. V. Korol’kov
    V. V. Kriventsov
    S. V. Trubina
    T. I. Asanova
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2023, 17 : 630 - 640
  • [39] Spin-orbit interactions in semiconductor superlattice
    Hao, Ya-Fei
    PHYSICS LETTERS A, 2020, 384 (04)
  • [40] High-fidelity spin readout via the double latching mechanism
    Kiyama, Haruki
    van Hien, Danny
    Ludwig, Arne
    Wieck, Andreas D.
    Oiwa, Akira
    NPJ QUANTUM INFORMATION, 2024, 10 (01)