High-Fidelity Spin Qubit Shuttling via Large Spin-Orbit Interactions

被引:5
|
作者
Bosco, Stefano [1 ,2 ,3 ]
Zou, Ji [1 ]
Loss, Daniel [1 ]
机构
[1] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[2] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
来源
PRX QUANTUM | 2024年 / 5卷 / 02期
基金
瑞士国家科学基金会;
关键词
QUANTUM PROCESSOR; LOGIC; GATE;
D O I
10.1103/PRXQuantum.5.020353
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Shuttling spins with high fidelity is a key requirement to scale up semiconducting quantum computers, enabling qubit entanglement over large distances and favoring the integration of control electronics on-chip. To decouple the spin from the unavoidable charge noise, state-of-the-art spin shuttlers try to minimize the inhomogeneity of the Zeeman field. However, this decoupling is challenging in otherwise promising quantum computing platforms such as hole spin qubits in silicon and germanium, characterized by a large spin-orbit interaction and an electrically tunable qubit frequency. In this work, we show that, surprisingly, the large inhomogeneity of the Zeeman field stabilizes the coherence of a moving spin state, thus also enabling high-fidelity shuttling in these systems. We relate this enhancement in fidelity to the deterministic dynamics of the spin that filters out the dominant low-frequency contributions of the charge noise. By simulating several different scenarios and noise sources, we show that this is a robust phenomenon generally occurring at large field inhomogeneity. By appropriately adjusting the motion of the quantum dot, we also design realistic protocols enabling faster and more coherent spin shuttling. Our findings are generally applicable to a wide range of setups and could pave the way toward large-scale quantum processors.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Spin-orbit interaction enabled high-fidelity two-qubit gates
    Qi, Jiaan
    Liu, Zhi-Hai
    Xu, Hongqi
    NEW JOURNAL OF PHYSICS, 2024, 26 (01):
  • [2] Effects of noise on fidelity in spin-orbit qubit transformations
    Ulcakar, L.
    Ramsak, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (17):
  • [3] Coupled Spin-Orbit Interactions in Flying Qubit Architectures
    Panda, Gaurab
    Aridi, Ryan S.
    Dong, Haozhi
    Ayres, Virginia M.
    Shaw, Harry C.
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE NANO 2021), 2021, : 409 - 412
  • [4] High-fidelity readout and control of a nuclear spin qubit in silicon
    Jarryd J. Pla
    Kuan Y. Tan
    Juan P. Dehollain
    Wee H. Lim
    John J. L. Morton
    Floris A. Zwanenburg
    David N. Jamieson
    Andrew S. Dzurak
    Andrea Morello
    Nature, 2013, 496 : 334 - 338
  • [5] Exact spin-orbit qubit manipulation
    Anton Ramšak
    Tilen Čadež
    Ambrož Kregar
    Lara Ulčakar
    The European Physical Journal Special Topics, 2018, 227 : 353 - 363
  • [6] Exact spin-orbit qubit manipulation
    Ramsak, Anton
    Cadez, Tilen
    Kregar, Ambroz
    Ulcakar, Lara
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (3-4): : 353 - 363
  • [7] High-fidelity readout and control of a nuclear spin qubit in silicon
    Pla, Jarryd J.
    Tan, Kuan Y.
    Dehollain, Juan P.
    Lim, Wee H.
    Morton, John J. L.
    Zwanenburg, Floris A.
    Jamieson, David N.
    Dzurak, Andrew S.
    Morello, Andrea
    NATURE, 2013, 496 (7445) : 334 - 338
  • [8] Electromagnetic Spin-Orbit Interactions via Scattering
    Vuong, L. T.
    Brok, J. M.
    Adam, A. J. L.
    Planken, P. C. M.
    Urbach, H. P.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3609 - +
  • [9] Spin-orbit qubit in a semiconductor nanowire
    Nadj-Perge, S.
    Frolov, S. M.
    Bakkers, E. P. A. M.
    Kouwenhoven, L. P.
    NATURE, 2010, 468 (7327) : 1084 - 1087
  • [10] Controlling a Nanowire Spin-Orbit Qubit via Electric-Dipole Spin Resonance
    Li, Rui
    You, J. Q.
    Sun, C. P.
    Nori, Franco
    PHYSICAL REVIEW LETTERS, 2013, 111 (08)