Tackling the curse of dimensionality with physics-informed neural networks

被引:22
|
作者
Hu, Zheyuan [1 ]
Shukla, Khemraj [2 ]
Karniadakis, George Em [2 ]
Kawaguchi, Kenji [1 ]
机构
[1] Natl Univ Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
[2] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
关键词
Physics-informed neural networks; Curse of dimensionality; PARTIAL-DIFFERENTIAL-EQUATIONS; DEEP LEARNING FRAMEWORK; ALGORITHMS; XPINNS;
D O I
10.1016/j.neunet.2024.106369
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The curse -of -dimensionality taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high -dimensional partial differential equations (PDEs), as Richard E. Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerical PDEs in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. We develop a new method of scaling up physics -informed neural networks (PINNs) to solve arbitrary high -dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs' and PINNs' residual into pieces corresponding to different dimensions and randomly samples a subset of these dimensional pieces in each iteration of training PINNs. We prove theoretically the convergence and other desired properties of the proposed method. We demonstrate in various diverse tests that the proposed method can solve many notoriously hard high -dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr & ouml;dinger equations in tens of thousands of dimensions very fast on a single GPU using the PINNs mesh -free approach. Notably, we solve nonlinear PDEs with nontrivial, anisotropic, and inseparable solutions in less than one hour for 1000 dimensions and in 12 h for 100,000 dimensions on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, it can be applied to any current and future variants of PINNs to scale them up for arbitrary high -dimensional PDEs.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30
  • [22] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    Nonlinear Dynamics, 2023, 111 : 15279 - 15291
  • [23] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [24] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    ANALYST, 2022, 147 (09) : 1881 - 1891
  • [25] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [26] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    FRONTIERS IN PHYSICS, 2020, 8
  • [27] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [28] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171
  • [29] Adversarial uncertainty quantification in physics-informed neural networks
    Yang, Yibo
    Perdikaris, Paris
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 136 - 152
  • [30] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451