On non parametric kernel estimation of the mode of the regression function in the strong mixing random design model with censored data
被引:1
|
作者:
Bouzebda, Salim
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Compiegne, LMAC Lab Appl Math Compiegne, Compiegne, FranceUniv Technol Compiegne, LMAC Lab Appl Math Compiegne, Compiegne, France
Bouzebda, Salim
[1
]
Khardani, Salah
论文数: 0引用数: 0
h-index: 0
机构:
Univ El Manar, Fac Sci Tunis, Lab Modelisat Math Anal Harmon Theorie Potentiel, Tunis, TunisiaUniv Technol Compiegne, LMAC Lab Appl Math Compiegne, Compiegne, France
Khardani, Salah
[2
]
Slaoui, Yousri
论文数: 0引用数: 0
h-index: 0
机构:
Univ Poitiers, LMA Lab Math & Applicat, Poitiers, FranceUniv Technol Compiegne, LMAC Lab Appl Math Compiegne, Compiegne, France
Slaoui, Yousri
[3
]
机构:
[1] Univ Technol Compiegne, LMAC Lab Appl Math Compiegne, Compiegne, France
[2] Univ El Manar, Fac Sci Tunis, Lab Modelisat Math Anal Harmon Theorie Potentiel, Tunis, Tunisia
[3] Univ Poitiers, LMA Lab Math & Applicat, Poitiers, France
This study delves into the conditional mode estimation of a randomly censored scalar response variable operating within the framework of strong mixing conditions. We introduce a kernel-based estimator for the conditional mode function. The principal contribution of this investigation lies in the derivation of the asymptotic distribution and the strong rate of convergence of the newly proposed estimators. These findings are established under a set of fairly comprehensive structural assumptions governing the underlying models. Additionally, we conduct a series of simulation studies to showcase the finite sample performance characteristics of the proposed estimator.
机构:
Chugoku Jr Coll, Dept Informat Sci & Business Management, Okayama 7010197, JapanChugoku Jr Coll, Dept Informat Sci & Business Management, Okayama 7010197, Japan
Okumura, Hidenori
Naito, Kanta
论文数: 0引用数: 0
h-index: 0
机构:Chugoku Jr Coll, Dept Informat Sci & Business Management, Okayama 7010197, Japan