Co-transcriptional production of programmable RNA condensates and synthetic organelles

被引:8
|
作者
Fabrini, Giacomo [1 ,2 ,3 ,4 ]
Farag, Nada [3 ]
Nuccio, Sabrina Pia [1 ]
Li, Shiyi [5 ]
Stewart, Jaimie Marie [6 ]
Tang, Anli A. [7 ]
McCoy, Reece [3 ]
Owens, Roisin M. [3 ]
Rothemund, Paul W. K. [6 ]
Franco, Elisa [5 ,7 ]
Di Antonio, Marco [1 ]
Di Michele, Lorenzo [1 ,2 ,3 ]
机构
[1] Imperial Coll London, Dept Chem, London, England
[2] Imperial Coll London, FabriCELL, London, England
[3] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge, England
[4] Francis Crick Inst, London, England
[5] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA USA
[6] CALTECH, Dept Comp & Math Sci, Pasadena, CA USA
[7] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA USA
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 欧盟地平线“2020”; 英国生物技术与生命科学研究理事会;
关键词
IN-VITRO TRANSCRIPTION; MALACHITE GREEN APTAMER; PHASE-SEPARATION; DNA; PROTEIN; PRECIPITATION; BEHAVIOR;
D O I
10.1038/s41565-024-01726-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Condensation of RNA and proteins is central to cellular functions, and the ability to program it would be valuable in synthetic biology and synthetic cell science. Here we introduce a modular platform for engineering synthetic RNA condensates from tailor-made, branched RNA nanostructures that fold and assemble co-transcriptionally. Up to three orthogonal condensates can form simultaneously and selectively accumulate fluorophores through embedded fluorescent light-up aptamers. The RNA condensates can be expressed within synthetic cells to produce membrane-less organelles with a controlled number and relative size, and showing the ability to capture proteins using selective protein-binding aptamers. The affinity between otherwise orthogonal nanostructures can be modulated by introducing dedicated linker constructs, enabling the production of bi-phasic RNA condensates with a prescribed degree of interphase mixing and diverse morphologies. The in situ expression of programmable RNA condensates could underpin the spatial organization of functionalities in both biological and synthetic cells. Controlling RNA and protein condensation is helpful in synthetic biology. Here the authors show programmable assembly of synthetic RNA nanostructures into designer membrane-less organelles that selectively recruit ligands via protein-binding aptamers.
引用
收藏
页码:1665 / 1673
页数:16
相关论文
共 50 条
  • [41] Lipid sponge droplets as programmable synthetic organelles
    Bhattacharya, Ahanjit
    Niederholtmeyer, Henrike
    Podolsky, Kira A.
    Bhattacharya, Rupak
    Song, Jing-Jin
    Brea, Roberto J.
    Tsai, Chu-Hsien
    Sinha, Sunil K.
    Devaraj, Neal K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (31) : 18206 - 18215
  • [42] Co-transcriptional splicing at nucleotide resolution
    Eytan Zlotorynski
    Nature Reviews Molecular Cell Biology, 2016, 17 : 264 - 265
  • [43] RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction
    Fong, Nova
    Saldi, Tassa
    Sheridan, Ryan M.
    Cortazar, Michael A.
    Bentley, David L.
    MOLECULAR CELL, 2017, 66 (04) : 546 - +
  • [44] Co-transcriptional regulation during chondrogenesis
    McAlinden, Audrey
    Ravindran, Soumya
    Hering, Thomas Martin
    FASEB JOURNAL, 2011, 25
  • [45] In silico methods for co-transcriptional RNA secondary structure prediction and for investigating alternative RNA structure expression
    Meyer, Irmtraud M.
    METHODS, 2017, 120 : 3 - 16
  • [46] Dynamic extended folding: Modeling the RNA secondary structures during co-transcriptional folding
    Cao, Huai
    Xie, Hua-Zhen
    Zhang, Wen
    Wang, Kan
    Li, Wei
    Liu, Ci-Quan
    JOURNAL OF THEORETICAL BIOLOGY, 2009, 261 (01) : 93 - 99
  • [47] Co-transcriptional folding is encoded within RNA genes -: art. no. 10
    Meyer, IM
    Miklós, I
    BMC MOLECULAR BIOLOGY, 2004, 5
  • [48] The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability
    Hamperl, Stephan
    Cimprich, Karlene A.
    DNA REPAIR, 2014, 19 : 84 - 94
  • [49] Co-transcriptional 3′ end processing of mRNAs and transcription termination by RNA polymerase II
    Buratowski, S
    FASEB JOURNAL, 2005, 19 (05): : A1372 - A1372
  • [50] Structural analysis of human ARS2 as a platform for co-transcriptional RNA sorting
    Wiebke Manuela Schulze
    Frank Stein
    Mandy Rettel
    Max Nanao
    Stephen Cusack
    Nature Communications, 9