A Recombination Generative Adversarial Network for Intrusion Detection

被引:0
|
作者
Luo, Haoqi [1 ]
Wan, Liang [1 ]
机构
[1] Guizhou Univ, State Key Lab Publ Big Data, Guiyang 555025, Peoples R China
关键词
intrusion detection; generative adversarial network; class imbalance; RGAN; IMBALANCE; IDS;
D O I
10.61822/amcs-2024-0023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The imbalance and complexity of network traffic data are hot issues in the field of intrusion detection. To improve the detection rate of minority class attacks in network traffic, this paper presents a method for intrusion detection based on the recombination generative adversarial network (RGAN). In this study, dual-stage game learning is used to optimize the discriminator for efficient identification of attack samples. In the first stage, the proposed model trains a deep convolutional generative adversarial network (DCGAN) integrated with the self-attention (SA) mechanism, and simultaneously trains an independent convolutional neural network (CNN) classifier integrated with the gated recurrent unit (GRU). This stage allows the generator to generate minority class attack samples that closely resemble real samples, while the independent classifier possesses the basic classification ability. In the second stage, the generator and the independent classifier of the DCGAN together constitute the second layer of the model-the generative adversarial network. Through dual-stage game learning, the classifier's discrimination ability for the minority samples is optimized, and it serves as the final output of the discriminator. In addition, the introduction of reconstruction loss helps prevent the detection rate of false positive samples. Experimental results on the CSE-IDS-2018 dataset demonstrate that our model performs well compared with various other intrusion detection techniques in terms of detection accuracy, recall, and F1-score for minority class attacks.
引用
收藏
页码:323 / 334
页数:12
相关论文
共 50 条
  • [21] A New Data-Balancing Approach Based on Generative Adversarial Network for Network Intrusion Detection System
    Jamoos, Mohammad
    Mora, Antonio M.
    AlKhanafseh, Mohammad
    Surakhi, Ola
    ELECTRONICS, 2023, 12 (13)
  • [22] Intrusion Detection Based on Generative Adversarial Network of Reinforcement Learning Strategy for Wireless Sensor Networks
    Tu J.
    Ogola W.
    Xu D.
    Xie W.
    International Journal of Circuits, Systems and Signal Processing, 2022, 16 : 478 - 482
  • [23] GAAINet: A Generative Adversarial Artificial Immune Network Model for Intrusion Detection in Industrial IoT Systems
    Sithungu, Siphesihle P.
    Ehlers, Elizabeth M.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2022, 13 (05) : 456 - 461
  • [24] An Enhanced AI-Based Network Intrusion Detection System Using Generative Adversarial Networks
    Park, Cheolhee
    Lee, Jonghoon
    Kim, Youngsoo
    Park, Jong-Geun
    Kim, Hyunjin
    Hong, Dowon
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (03) : 2330 - 2345
  • [25] Enhancing Autonomous Intrusion Detection System with Generative Adversarial Networks
    Kostage, Kevin
    West, David
    Meinert, Tim
    Qu, Chengyi
    Calyam, Prasad
    Mazzola, Luca
    2024 IEEE 20TH INTERNATIONAL CONFERENCE ON E-SCIENCE, E-SCIENCE 2024, 2024,
  • [26] Generative Adversarial Networks for Distributed Intrusion Detection in the Internet of Things
    Ferdowsi, Aidin
    Saad, Walid
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [27] Network Intrusion Detection Method Based on Conditional Generative Adversarial Network integrating Multi-scale CNN
    Geng, Zhiqiang
    Xi, Xiang
    Hu, Xuan
    Han, Yongming
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1522 - 1527
  • [28] MCGAN: Modified Conditional Generative Adversarial Network (MCGAN) for Class Imbalance Problems in Network Intrusion Detection System
    Babu, Kunda Suresh
    Rao, Yamarthi Narasimha
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [29] Network Intrusion Detection Based on Conditional Wasserstein Generative Adversarial Network and Cost-Sensitive Stacked Autoencoder
    Zhang, Guoling
    Wang, Xiaodan
    Li, Rui
    Song, Yafei
    He, Jiaxing
    Lai, Jie
    IEEE ACCESS, 2020, 8 : 190431 - 190447
  • [30] Adversarial examples for network intrusion detection systems
    Sheatsley, Ryan
    Papernot, Nicolas
    Weisman, Michael J.
    Verma, Gunjan
    McDaniel, Patrick
    JOURNAL OF COMPUTER SECURITY, 2022, 30 (05) : 727 - 752