Multi-view contrastive clustering via integrating graph aggregation and confidence enhancement

被引:9
|
作者
Bian, Jintang [1 ,2 ]
Xie, Xiaohua [1 ,2 ]
Lai, Jian-Huang [1 ,2 ]
Nie, Feiping [3 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] GuangDong Prov Key Lab Informat Secur Technol, Guangzhou, Peoples R China
[3] Northwestern Polytech Univ, Sch Comp Sci, Sch Artificial Intelligence Opt & Elect iOPEN, Xian, Peoples R China
[4] Northwestern Polytech Univ, Key Lab Intelligent Interact & Applicat, Minist Ind & Informat Technol, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep multi-view clustering; Graph convolutional network; Self-supervision learning; Contrastive learning; REPRESENTATION; RECOGNITION;
D O I
10.1016/j.inffus.2024.102393
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi -view clustering endeavors to effectively uncover consistent clustering patterns across multiple data sources or feature spaces. This field grapples with two key challenges: (1) the effective integration and utilization of consistency and complementarity information from diverse view spaces, and (2) the capturing of structural correlations between data samples in the multi -view context. To address these challenges, this paper proposes the Multi -view contrAstive clustering with Graph Aggregation and confidence enhancement (MAGA) algorithm. Specifically, we employ a deep autoencoder network to learn embedded features for each independent view. To harness consistency and complementarity information, we introduce the Simple Cross -view Spectral Graph Aggregation module. This module utilizes graph convolutional layers to generate view -specific graph embeddings and subsequently aggregates these embeddings from different views into a unified feature space using a cross -view self -attention mechanism. To capture both inter -view and intraview structural correlations among different samples, we propose a dual representation contrastive learning mechanism, which operates concurrently at both the instance and feature levels. Additionally, we introduce the maximizing cluster assignment confidence mechanism to obtain more compact clustering assignments. As a result, MAGA outperforms 20 competitive methods across nine benchmark datasets, showcasing its superior performance. Code: https://github.com/BJT-bjt/MAGA.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Selective Contrastive Learning for Unpaired Multi-View Clustering
    Xin, Like
    Yang, Wanqi
    Wang, Lei
    Yang, Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1749 - 1763
  • [42] Multi-view Document Clustering with Joint Contrastive Learning
    Bai, Ruina
    Huang, Ruizhang
    Qin, Yongbin
    Chen, Yanping
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I, 2022, 13551 : 706 - 719
  • [43] DealMVC: Dual Contrastive Calibration for Multi-view Clustering
    Yang, Xihong
    Jin Jiaqi
    Wang, Siwei
    Liang, Ke
    Liu, Yue
    Wen, Yi
    Liu, Suyuan
    Zhou, Sihang
    Liu, Xinwang
    Zhu, En
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 337 - 346
  • [44] Multi-view clustering with semantic fusion and contrastive learning
    Yu, Hui
    Bian, Hui-Xiang
    Chong, Zi-Ling
    Liu, Zun
    Shi, Jian-Yu
    NEUROCOMPUTING, 2024, 603
  • [45] Selective Contrastive Learning for Unpaired Multi-View Clustering
    Xin, Like
    Yang, Wanqi
    Wang, Lei
    Yang, Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1749 - 1763
  • [46] Multi-View Spectral Clustering via Integrating Global and Local Graphs
    Xie, Deyan
    Gao, Quanxue
    Wang, Qianqian
    Xiao, Song
    IEEE ACCESS, 2019, 7 : 31197 - 31206
  • [47] Multi-view graph contrastive learning for social recommendation
    Chen, Rui
    Chen, Jialu
    Gan, Xianghua
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [48] CONAN: Contrastive Fusion Networks for Multi-view Clustering
    Ke, Guanzhou
    Hong, Zhiyong
    Zeng, Zhiqiang
    Liu, Zeyi
    Sun, Yangjie
    Xie, Yannan
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 653 - 660
  • [49] Incomplete Multi-view Clustering via Graph Regularized Matrix Factorization
    Wen, Jie
    Zhang, Zheng
    Xu, Yong
    Zhong, Zuofeng
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 : 593 - 608
  • [50] Multi-View Network Embedding Via Graph Factorization Clustering and Co-Regularized Multi-View Agreement
    Sun, Yiwei
    Bui, Ngot
    Hsieh, Tsung-Yu
    Honavar, Vasant
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1006 - 1013