Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation

被引:0
|
作者
Femi, David [1 ]
Mukunthan, Manapakkam Anandan [1 ]
机构
[1] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Leaf disease classification; deep learning; DEDCNet; hyperparameters; dingo optimizer; exploration; exploitation;
D O I
10.1080/0954898X.2024.2326493
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] A deep Convolutional Encoder-Decoder Network for Page Segmentation of Historical Handwritten Documents into Text Zones
    Kaddas, Panagiotis
    Gatos, Basilis
    PROCEEDINGS 2018 16TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2018, : 259 - 264
  • [22] Fig Plant Segmentation from Aerial Images Using a Deep Convolutional Encoder-Decoder Network
    Fuentes-Pacheco, Jorge
    Torres-Olivares, Juan
    Roman-Rangel, Edgar
    Cervantes, Salvador
    Juarez-Lopez, Porfirio
    Hermosillo-Valadez, Jorge
    Manuel Rendon-Mancha, Juan
    REMOTE SENSING, 2019, 11 (10)
  • [23] Seismic Stratum Segmentation Using an Encoder-Decoder Convolutional Neural Network
    Wang, Detao
    Chen, Guoxiong
    MATHEMATICAL GEOSCIENCES, 2021, 53 (06) : 1355 - 1374
  • [24] Whole Image Synthesis Using a Deep Encoder-Decoder Network
    Sevetlidis, Vasileios
    Giuffrida, Mario Valerio
    Tsaftaris, Sotirios A.
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2016, 2016, 9968 : 127 - 137
  • [25] Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network
    Thien Huynh-The
    Hua, Cam-Hao
    Nguyen Anh Tu
    Kim, Dong-Seong
    2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 552 - 558
  • [26] Optimizing the Hyperparameters of Fully Convolutional Encoder-Decoder Networks for SAR Image Segmentation
    Liu, Yuanyue
    Zhao, Jin
    Fan, Jianchao
    Wang, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [27] NucleiNet: A Convolutional Encoder-decoder Network for Bio-image Denoising
    Liu, Zichuan
    Hu, Yifei
    Xu, Hang
    Nasser, Lamees
    Coquet, Philippe
    Boudier, Thomas
    Yu, Hao
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1986 - 1989
  • [28] Roadway Crack Segmentation Based on an Encoder-decoder Deep Network with Multi-scale Convolutional Blocks
    Sun, Mengyuan
    Guo, Runhua
    Zhu, Jinhui
    Fan, Wenhui
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 869 - 874
  • [29] An encoder-decoder deep neural network for binary segmentation of seismic facies
    Lima, Gefersom
    Zeiser, Felipe Andre
    Da Silveira, Ariane
    Rigo, Sandro
    Ramos, Gabriel de Oliveira
    COMPUTERS & GEOSCIENCES, 2024, 183
  • [30] CEDRNN: A Convolutional Encoder-Decoder Residual Neural Network for Liver Tumour Segmentation
    Arivazhagan Selvaraj
    Emerson Nithiyaraj
    Neural Processing Letters, 2023, 55 : 1605 - 1624