Multiferroic neuromorphic computation devices

被引:1
|
作者
Lu, Guangming [1 ]
Salje, Ekhard K. H. [2 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
来源
APL MATERIALS | 2024年 / 12卷 / 06期
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
FERROELASTIC MATERIALS; DOMAIN BOUNDARIES; PHASE-TRANSITION; TWIN WALLS; X-RAY; FLEXOELECTRICITY; VORTICES; POLARITY;
D O I
10.1063/5.0216849
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neuromorphic computation is based on memristors, which function equivalently to neurons in brain structures. These memristors can be made more efficient and tailored to neuromorphic devices by using ferroelastic domain boundaries as fast diffusion paths for ionic conduction, such as of oxygen, sodium, or lithium. In this paper, we show that the local memristor generates a second, unexpected feature, namely, weak magnetic fields that emerge from moving ferroelastic needle domains and vortices. The vortices appear near ferroelastic "junctions" that are common when the external stimulus is a combination of electric fields and structural phase transitions. Many ferroelastic materials show such phase transitions near room temperatures so that device applications display a "multiferroic" scenario where the memristor is driven electrically and read magnetically. Our computer simulation study of an elastic spring model suggests magnetic fields in the order of 10(-7) T, which opens the way for a fundamentally new way of running neuromorphic devices. The magnetism in such devices emerges entirely from intrinsic displacement currents and not from any intrinsic magnetism of the material.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Spintronic devices for neuromorphic computing
    YaJun Zhang
    Qi Zheng
    XiaoRui Zhu
    Zhe Yuan
    Ke Xia
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [22] Neuromorphic computing with memristive devices
    Ma, Wen
    Zidan, Mohammed A.
    Lu, Wei D.
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (06)
  • [23] Perspective: A review on memristive hardware for neuromorphic computation
    Yoo, In Kyeong (inyoo@postech.ac.kr), 1600, American Institute of Physics Inc. (124):
  • [24] CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review
    Zhu, Yixin
    Mao, Huiwu
    Zhu, Ying
    Wang, Xiangjing
    Fu, Chuanyu
    Ke, Shuo
    Wan, Changjin
    Wan, Qing
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (04)
  • [25] Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
    Wunderlich, Timo
    Kungl, Akos F.
    Mueller, Eric
    Hartel, Andreas
    Stradmann, Yannik
    Aamir, Syed Ahmed
    Gruebl, Andreas
    Heimbrecht, Arthur
    Schreiber, Korbinian
    Stoeckel, David
    Pehle, Christian
    Billaudelle, Sebastian
    Kiene, Gerd
    Mauch, Christian
    Schemmel, Johannes
    Meier, Karlheinz
    Petrovici, Mihai A.
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [26] Neuromorphic computation with a single magnetic domain wall
    Ababei, Razvan V.
    Ellis, Matthew O. A.
    Vidamour, Ian T.
    Devadasan, Dhilan S.
    Allwood, Dan A.
    Vasilaki, Eleni
    Hayward, Thomas J.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review
    Yixin Zhu
    Huiwu Mao
    Ying Zhu
    Xiangjing Wang
    Chuanyu Fu
    Shuo Ke
    Changjin Wan
    Qing Wan
    InternationalJournalofExtremeManufacturing, 2023, 5 (04) : 296 - 317
  • [28] Research progress of neuromorphic computation based on memcapacitors
    Ren Kuan
    Zhang Ke-Jia
    Qin Xi-Zi
    Ren Huan-Xin
    Zhu Shou-Hui
    Yang Feng
    Sun Bai
    Zhao Yong
    ACTA PHYSICA SINICA, 2021, 70 (07)
  • [29] Robust Memristor Networks for Neuromorphic Computation Applications
    Hajto, Daniel
    Rak, Adam
    Cserey, Gyorgy
    MATERIALS, 2019, 12 (21)
  • [30] Neuromorphic Computing with Computation-in-Memory (CIM)
    Takeuchi, Ken
    2023 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI-TSA/VLSI-DAT, 2023,