A Multi-scale Graph Network with Multi-head Attention for Histopathology Image Diagnosis

被引:0
|
作者
Xing, Xiaodan [1 ]
Ma, Yixin [2 ]
Jin, Lei [2 ]
Sun, Tianyang [3 ]
Xue, Zhong [3 ]
Shi, Feng [3 ]
Wu, Jinsong [2 ]
Shen, Dinggang [3 ]
机构
[1] Imperial Coll London, Natl Heart & Lung Inst, London, England
[2] Fudan Univ, Huashan Hosp, Dept Neurol Surg, Glioma Surg Div, Shanghai, Peoples R China
[3] United Imaging Intelligence, Boston, MA USA
关键词
Whole slide image classification; Graph convolution network; Attention;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hematoxylin-eosin (H&E) staining plays an essential role in brain glioma diagnosis, but reading pathologic images and generating diagnostic reports can be a tedious and laborious work. Pathologists need to combine and navigate extremely large images with different scales and to quantify different aspects for subtyping. In this work, we propose an automatic diagnosis algorithm to identify cell types and severity of H&E slides, in order to classify five major subtypes of glioma from whole slide pathological images. The proposed method is featured by a pyramid graph structure and an attention-based multi-instance learning strategy. We claim that our method not only improve the classification accuracy by utilizing multi-scale information, but also help to identify high risk patches. We summarized patches from multiple resolutions into a graph structure. The nodes of the pyramid graph are feature vectors extracted from image patches, and these vectors are connected by their spatial adjacency. We then fed the graph into the proposed model with self-attention and graph convolutions. Here, we used a multi-head self-attention architecture, where same self-attention blocks are stacked in parallel. As proven in Transformer networks, multiple attention maps herein capture comprehensive activation patterns from different subspace representation. Using the proposed method, the results show a 70% accuracy for glioma subtyping. The multiresolution attention maps generated from the proposed method could help locate proliferations and necrosis in the whole pathologic slide.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 50 条
  • [21] A Graph Neural Network with Multi-head Attention for Universal Brain Disease Diagnosis from fMRI Images
    Moon, Hyung-Jun
    Kang, Tae-Hoon
    Cho, Sung-Bae
    HYBRID ARTIFICIAL INTELLIGENT SYSTEM, PT I, HAIS 2024, 2025, 14857 : 85 - 97
  • [22] STACKED MULTI-SCALE ATTENTION NETWORK FOR IMAGE COLORIZATION
    Jiang, Bin
    Xu, Fangqiang
    Xia, Jun
    Yang, Chao
    Huang, Wei
    Huang, Yun
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2225 - 2229
  • [23] Multi-Scale Context Attention Network for Image Retrieval
    Lou, Yihang
    Bai, Yan
    Wang, Shiqi
    Duan, Ling-Yu
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1128 - 1136
  • [24] Dense Dilated Multi-Scale Supervised Attention-Guided Network for histopathology image segmentation
    Das, Rangan
    Bose, Shirsha
    Chowdhury, Ritesh Sur
    Maulik, Ujjwal
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [25] Multi-scale receptive fields: Graph attention neural network for hyperspectral image classification
    Ding, Yao
    Zhang, Zhili
    Zhao, Xiaofeng
    Hong, Danfeng
    Cai, Wei
    Yang, Nengjun
    Wang, Bei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 223
  • [26] Interactive Selection Recommendation Based on the Multi-head Attention Graph Neural Network
    Zhang, Shuxi
    Chen, Jianxia
    Yao, Meihan
    Wu, Xinyun
    Ge, Yvfan
    Li, Shu
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT III, 2024, 14449 : 447 - 458
  • [27] OPNet: Optimized multi-head graph attention network for polymer properties prediction
    Wei, Wei
    Fang, Jun
    Yang, Ning
    Li, Qi
    Hu, Lin
    Han, Jie
    Zhao, Lanbo
    AIP ADVANCES, 2024, 14 (08)
  • [28] Multi-Scale Dense Graph Attention Network for Hyperspectral Classification
    Wang, Chen
    Li, Lu
    Wang, Zhongqi
    Ma, Jingyao
    Kong, Yunlong
    Wang, Yanfeng
    Chang, Jianrui
    Zhang, Zimeng
    Lin, Xinyu
    CANADIAN JOURNAL OF REMOTE SENSING, 2024, 50 (01)
  • [29] A Multi-Head Convolutional Neural Network with Multi-Path Attention Improves Image Denoising
    Zhang, Jiahong
    Qu, Meijun
    Wang, Ye
    Cao, Lihong
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 338 - 351
  • [30] Multi-Head Attention and Knowledge Graph Based Dual Target Graph Collaborative Filtering Network
    Yu, Xu
    Peng, Qinglong
    Jiang, Feng
    Du, Junwei
    Liang, Hongtao
    Liu, Jinhuan
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 9155 - 9177