Machine/deep learning-assisted hemoglobin level prediction using palpebral conjunctival images

被引:0
|
作者
Kato, Shota [1 ]
Chagi, Keita [2 ]
Takagi, Yusuke [2 ]
Hidaka, Moe [1 ]
Inoue, Shutaro [1 ]
Sekiguchi, Masahiro [1 ]
Adachi, Natsuho [1 ]
Sato, Kaname [1 ]
Kawai, Hiroki [2 ]
Kato, Motohiro [1 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Pediat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138655, Japan
[2] LPIXEL Inc, Tokyo, Japan
基金
日本学术振兴会;
关键词
artificial intelligence; CNN model; grad-CAM; non-invasive anaemia prediction; ANEMIA;
D O I
10.1111/bjh.19621
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Palpebral conjunctival hue alteration is used in non-invasive screening for anaemia, whereas it is a qualitative measure. This study constructed machine/deep learning models for predicting haemoglobin values using 150 palpebral conjunctival images taken by a smartphone. The median haemoglobin value was 13.1 g/dL, including 10 patients with <11 g/dL. A segmentation model using U-net was successfully constructed. The segmented images were subjected to non-convolutional neural network (CNN)-based and CNN-based regression models for predicting haemoglobin values. The correlation coefficients between the actual and predicted haemoglobin values were 0.38 and 0.44 in the non-CNN-based and CNN-based models, respectively. The sensitivity and specificity for anaemia detection were 13% and 98% for the non-CNN-based model and 20% and 99% for the CNN-based model. The performance of the CNN-based model did not improve with a mask layer guiding the model's attention towards the conjunctival regions, however, slightly improved with correction by the aspect ratio and exposure time of input images. The gradient-weighted class activation mapping heatmap indicated that the lower half area of the conjunctiva was crucial for haemoglobin value prediction. In conclusion, the CNN-based model had better results than the non-CNN-based model. The prediction accuracy would improve by using more input data with anaemia.
引用
收藏
页码:1590 / 1598
页数:9
相关论文
共 50 条
  • [31] Machine Learning-Assisted Carbon Dot Synthesis: Prediction of Emission Color and Wavelength
    Senanayake, Ravithree D.
    Yao, Xiaoxiao
    Froehlich, Clarice E.
    Cahill, Meghan S.
    Sheldon, Trever R.
    McIntire, Mary
    Haynes, Christy L.
    Hernandez, Rigoberto
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (23) : 5918 - 5928
  • [32] Machine learning-assisted prediction of the toxicity of silver nanoparticles: a meta-analysis
    Eyup Bilgi
    Ceyda Oksel Karakus
    Journal of Nanoparticle Research, 2023, 25
  • [33] Deep learning-assisted prediction of protein-protein interactions in Arabidopsis thaliana
    Zheng, Jingyan
    Yang, Xiaodi
    Huang, Yan
    Yang, Shiping
    Wuchty, Stefan
    Zhang, Ziding
    PLANT JOURNAL, 2023, 114 (04): : 984 - 994
  • [34] Machine learning-assisted investigation of CIGS thin-film solar cell degradation using deep learning analysis
    Maoucha, A.
    Berghout, T.
    Djeffal, F.
    Ferhati, H.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2025, 199
  • [35] Deep Learning-Assisted Traffic Prediction in Hybrid SDN/OSPF Backbone Networks
    Etengu, Richard
    Tan, Saw Chin
    Chuah, Teong Che
    Galan-Jimenez, Jaime
    PROCEEDINGS OF THE IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2022, 2022,
  • [36] Towards a Machine Learning-Assisted Kernel with LAKE
    Fingler, Henrique
    Tarte, Isha
    Yu, Hangchen
    Szekely, Ariel
    Hu, Bodun
    Akella, Aditya
    Rossbach, Christopher J.
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 2, ASPLOS 2023, 2023, : 846 - 861
  • [37] Machine Learning-Assisted Segmentation of Pancreas MRI
    Tirado-Velez, Pedro L.
    Kang, Sanghoon
    Ju, Huiwen
    Campbell-Thompson, Martha
    Kim, Sarah
    Lamb, Damon
    DIABETES, 2024, 73
  • [38] Machine Learning-Assisted Analysis of Electrochemical Biosensors
    Deshpande, Shreyas
    Datar, Rishikesh
    Pramanick, Bidhan
    Bacher, Gautam
    IEEE SENSORS LETTERS, 2023, 7 (09)
  • [39] Machine learning-assisted colloidal synthesis: A review
    Gulevich, D. G.
    Nabiev, I. R.
    Samokhvalov, P. S.
    MATERIALS TODAY CHEMISTRY, 2024, 35
  • [40] Machine learning-assisted crystal engineering of a zeolite
    Xinyu Li
    He Han
    Nikolaos Evangelou
    Noah J. Wichrowski
    Peng Lu
    Wenqian Xu
    Son-Jong Hwang
    Wenyang Zhao
    Chunshan Song
    Xinwen Guo
    Aditya Bhan
    Ioannis G. Kevrekidis
    Michael Tsapatsis
    Nature Communications, 14