MLOps Approach for Automatic Segmentation of Biomedical Images

被引:0
|
作者
Berezsky, Oleh [1 ]
Pitsun, Oleh [1 ]
Melnyk, Grygoriy [1 ]
Batko, Yuriy [1 ]
Liashchynskyi, Petro [1 ]
Berezkyi, Mykola [1 ]
机构
[1] West Ukrainian Natl Univ, 11 Lvivska St, UA-46001 Ternopol, Ukraine
关键词
Machine learning; MLOps; biomedical images; programming;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When using artificial intelligence systems for processing medical images, a large amount of software libraries, data and cloud computing is required. Implementing deep learning elements in CAD is a complex process and applying DevOps can help speed up this process. The implementation of DevOps approaches in the field of machine learning differs from the operations with standard programs; therefore the development of MLOps approaches to the implementation of deep learning elements for the analysis of biomedical images is an actual task. The developed pipeline allows scientists and specialists to use the findings in this article to launch projects based on machine learning and focus on model development rather than the process of setting up the environment. This paper provides examples of improved MLOps pipelines that can be used for solving problems of automatic image segmentation and evaluating the quantitative characteristics of microobjects.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Automatic segmentation of intravascular ultrasound images: A texture-based approach
    Aleksandra Mojsilović
    Miodrag Popović
    Nenad Amodaj
    Rade Babić
    Miodrag Ostojić
    Annals of Biomedical Engineering, 1997, 25 : 1059 - 1071
  • [22] Automatic Segmentation of River and Land in SAR Images: A Deep Learning Approach
    Pai, Manohara M. M.
    Mehrotra, Vaibhav
    Aiyar, Shreyas
    Verma, Ujjwal
    Pai, Radhika M.
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 15 - 20
  • [23] An entropy-based approach to automatic image segmentation of satellite images
    Barbieri, Andre L.
    de Arruda, G. F.
    Rodrigues, Francisco A.
    Bruno, Odemir M.
    Costa, Luciano da Fontoura
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (03) : 512 - 518
  • [24] Automatic segmentation of intravascular ultrasound images: A texture-based approach
    Mojsilovic, A
    Popovic, M
    Amodaj, N
    Babic, R
    Ostojic, M
    ANNALS OF BIOMEDICAL ENGINEERING, 1997, 25 (06) : 1059 - 1071
  • [25] An Automatic Media-Adventitia Border Segmentation Approach for IVUS Images
    Moraes, Matheus Cardoso
    Furuie, Sergio Shiguemi
    COMPUTING IN CARDIOLOGY 2010, VOL 37, 2010, 37 : 389 - 392
  • [26] Automatic segmentation of intravascular ultrasound images: A texture-based approach
    Aleksandra Mojsilović
    Miodrag Popović
    Nenad Amodaj
    Rade Babić
    Miodrag Ostojić
    Annals of Biomedical Engineering, 1997, 25 (6) : 1059 - 1071
  • [27] Application Of MLOps Practices For Biomedical Image Classification
    Berezsky, Oleh
    Pitsun, Oleh
    Melnyk, Grygory
    Batko, Yuriy
    Derysh, Bohdan
    Liashchynskyi, Petro
    5TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE, IDDM 2022, 2022, 3302
  • [28] Two Robust Techniques for Segmentation of Biomedical Images
    Rodriguez, Roberto
    Castillo, Patricio J.
    Guerra, Valia
    Suarez, Ana G.
    Izquierdo, Ebroul
    COMPUTACION Y SISTEMAS, 2006, 9 (04): : 355 - 369
  • [29] Segmentation of Biomedical Images with Joint Unsupervised Learning
    Zalyatskiy, Grigoriy
    Evstratov, Alexey
    Doronin, Igor
    Bolkisev, Ilya
    Ushenin, Konstantin
    VII INTERNATIONAL YOUNG RESEARCHERS' CONFERENCE - PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2020), 2020, 2313
  • [30] Comparative Study on Segmentation Techniques for Biomedical Images
    ElFiqi, Mahmoud
    Ismail, Samar M.
    Ghany, Mohamed A. Abd El
    2020 32ND INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM), 2020, : 62 - 65