Machine Learning-Assisted Operation Monitoring Analytics on a Hydro Power Plant

被引:0
|
作者
Ahungwa, Ahungwa Gregory [1 ]
Ioana, Cornel [2 ]
Bouillet, Vincent [3 ]
Michel, Benoit [3 ]
Bombenger, Antoine [4 ]
Veras, Pedro [4 ]
机构
[1] Univ Grenoble Alpes, Grenoble INP, Digital Hydro, GE Vernova Hydro Power, Grenoble, France
[2] Univ Grenoble Alpes, Grenoble INP, Grenoble, France
[3] GE Vernova Hydro Power, Digital Hydro, Grenoble, France
[4] GE Vernova Hydro Power, Hydraul CoE, Grenoble, France
关键词
Machine Learning; Hydro Plant Monitoring; Operation Analytics;
D O I
10.1109/GPECOM61896.2024.10582718
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Globally, amidst the growing energy needs, the energy transition has led to the massive incorporation of renewable energy sources like solar and wind into existing electrical grids, whose variable nature poses serious grid reliability issues. The flexible operation of energy storage solutions like hydro Pumped Storage Plants (PSPs) (in terms of the increased number of start and stop cycles and its operation under varying loading conditions) aimed at mitigating these issues has resulted in the accelerated degradation of its critical components such as the runner, generator etc owing to its prolonged operation under off-design conditions far from its Best Efficiency Point (BEP). It has become expedient to continually monitor and track its operation to ascertain its rate of degradation and inform maintenance and component replacement decisions. This paper facilitates this monitoring objectives by proposing a machine-learning based methodology for detecting/tracking the operating mode of a PSP from a combination of hybrid signals from the on-site Distributed Control System (DCS) using two models - an LSTM-based network and an SVM with overall accuracy, recall and precision of over 99 percent. In a second step, key operation statistics such as the time spent during turbine and pump operations under diverse loading conditions and a count of the start and stop cycles which are extremely useful for remaining useful life estimation and in understanding operational patterns within different time granularities for example are computed.
引用
收藏
页码:461 / 471
页数:11
相关论文
共 50 条
  • [31] Machine Learning-Assisted Modeling in Antenna Array Design
    Wu, Qi
    Chen, Weiqi
    Li, Yuefeng
    Wang, Haiming
    Yin, Jiexi
    Yin, Weishuang
    2024 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY, IWAT, 2024, : 92 - 93
  • [32] Machine Learning-Assisted PAPR Reduction in Massive MIMO
    Kalinov, Aleksei
    Bychkov, Roman
    Ivanov, Andrey
    Osinsky, Alexander
    Yarotsky, Dmitry
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 537 - 541
  • [33] Machine learning-assisted investigations toward polymer synthesis
    Zhang, Zexi
    Cai, Zhanxiang
    Zhang, Wenbin
    Lu, Hua
    Chen, Mao
    CHINESE SCIENCE BULLETIN-CHINESE, 2025, 70 (4-5): : 471 - 480
  • [34] Machine Learning-Assisted Decision Making in Orthopaedic Oncology
    Rizk, Paul A.
    Gonzalez, Marcos R.
    Galoaa, Bishoy M.
    Girgis, Andrew G.
    Van Der Linden, Lotte
    Chang, Connie Y.
    Lozano-Calderon, Santiago A.
    JBJS REVIEWS, 2024, 12 (07)
  • [35] Machine learning-assisted global optimization of photonic devices
    Kudyshev, Zhaxylyk A.
    Kildishev, Alexander, V
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    NANOPHOTONICS, 2021, 10 (01) : 371 - 383
  • [36] Machine learning-assisted synthetic biology of cyanobacteria and microalgae
    Jin, Weijia
    Wang, Fangzhong
    Chen, Lei
    Zhang, Weiwen
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2025, 86
  • [37] Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides
    Bhangu, Sukhvir Kaur
    Welch, Nicholas
    Lewis, Morgan
    Li, Fanyi
    Gardner, Brint
    Thissen, Helmut
    Kowalczyk, Wioleta
    SMALL SCIENCE, 2025,
  • [38] Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery
    Lee, Min-Jeong
    Kim, Ji-Yoon
    Kim, Paul
    Lee, In-Seo
    Mswahili, Medard E.
    Jeong, Young-Seob
    Choi, Guang J.
    PHARMACEUTICS, 2022, 14 (02)
  • [39] Investigation on Machine learning based fault detection and estimation in hydro turbines of industrial hydro power plant
    Sujatha, V.
    MEASUREMENT, 2025, 247
  • [40] Machine Learning-Assisted Design of Advanced Polymeric Materials
    Gao, Liang
    Lin, Jiaping
    Wang, Liquan
    Du, Lei
    ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (05): : 571 - 584