Sliding mode control for uncertain fractional-order reaction-diffusion memristor neural networks with time delays

被引:7
|
作者
Cao, Yue [1 ]
Kao, Yonggui [1 ]
Wang, Zhen [2 ]
Yang, Xinsong [3 ]
Park, Ju H. [4 ]
Xie, Wei [5 ]
机构
[1] Harbin Inst Technol, Dept Math, Weihai 264209, Peoples R China
[2] Shandong Univ Sci & Technol, Dept Math, Qingdao 266590, Peoples R China
[3] Sichuan Univ, Sch Elect & Informat Engn, Chengdu 610041, Peoples R China
[4] Yeungnam Univ, Dept Elect Engn, 280 Daehak-Ro, Kyongsan 38541, South Korea
[5] Harbin Inst Technol WeiHai, Sch Informat Sci & Engn, Weihai 264209, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 新加坡国家研究基金会;
关键词
Fractional-order; Time delays; Reaction-diffusion; Memristor neural networks; Sliding mode control; SYNCHRONIZATION CONTROL; DISSIPATIVITY; STABILITY;
D O I
10.1016/j.neunet.2024.106402
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates a sliding mode control method for a class of uncertain delayed fractional -order reaction- diffusion memristor neural networks. Different from most existing literature on sliding mode control for fractional -order reaction-diffusion systems, this study constructs a linear sliding mode switching function and designs the corresponding sliding mode control law. The sufficient theory for the globally asymptotic stability of the sliding mode dynamics are provided, and it is proven that the sliding mode surface is finite -time reachable under the proposed control law, with an estimate of the maximum reaching time. Finally, a numerical test is presented to validate the effectiveness of the theoretical analysis.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Global Synchronization of Reaction-Diffusion Fractional-Order Memristive Neural Networks with Time Delay and Unknown Parameters
    Sun, Wenjiao
    Ren, Guojian
    Yu, Yongguang
    Hai, Xudong
    COMPLEXITY, 2020, 2020
  • [32] Adaptive quasi-synchronization control of heterogeneous fractional-order coupled neural networks with reaction-diffusion
    Chen, Wei
    Yu, Yongguang
    Hai, Xudong
    Ren, Guojian
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 427
  • [33] Synchronization of fractional-order delayed neural networks with reaction-diffusion terms: Distributed delayed impulsive control
    Liu, Fengyi
    Yang, Yongqing
    Chang, Qi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 124
  • [34] Adaptive quasi-synchronization control of heterogeneous fractional-order coupled neural networks with reaction-diffusion
    Chen, Wei
    Yu, Yongguang
    Hai, Xudong
    Ren, Guojian
    Applied Mathematics and Computation, 2022, 427
  • [35] Pinning synchronization of fractional memristor-based neural networks with neutral delays and reaction-diffusion terms
    Wu, Xiang
    Liu, Shutang
    Wang, Huiyu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [36] Passivity and Synchronization of Coupled Uncertain Reaction-Diffusion Neural Networks With Multiple Time Delays
    Wang, Jin-Liang
    Qin, Zhen
    Wu, Huai-Ning
    Huang, Tingwen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (08) : 2434 - 2448
  • [37] Adaptive Output Synchronization of Coupled Fractional-Order Memristive Reaction-Diffusion Neural Networks
    You, Feng
    Tang, Hong-An
    Wang, Yanhong
    Xia, Zi-Yi
    Li, Jin-Wei
    FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [38] Synchronization Control of Fractional-Order Neural Networks with Time-Varying Delays
    Yin, Ting
    Chen, Boshan
    Zhong, Jie
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2017, : 79 - 83
  • [39] Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control
    Liu, Heng
    Pan, Yongping
    Li, Shenggang
    Chen, Ye
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (07) : 1219 - 1232
  • [40] Finite-time H∞ control of uncertain fractional-order neural networks
    Thuan, Mai Viet
    Sau, Nguyen Huu
    Huyen, Nguyen Thi Thanh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):