Limiting Spectral Radii for Products of Ginibre Matrices and Their Inverses

被引:0
|
作者
Ma, Xiansi [1 ]
Qi, Yongcheng [1 ]
机构
[1] Univ Minnesota Duluth, Dept Math & Stat, Duluth, MN 55812 USA
关键词
Product matrix; Eigenvalue; Spectral radius; Ginibre matrix; DISTRIBUTIONS; EIGENVALUES; ENSEMBLES;
D O I
10.1007/s10959-024-01341-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the product of m independent n-by-n Ginibre matrices and their inverses, where m=p+q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=p+q$$\end{document}, p is the number of Ginibre matrices, and q is the number of inverses of Ginibre matrices. The maximum absolute value of the eigenvalues of the product matrices is known as the spectral radius. In this paper, we explore the limiting spectral radii of the product matrices as n tends to infinity and m varies with n. Specifically, when q >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 1$$\end{document} is a fixed integer, we demonstrate that the limiting spectral radii display a transition phenomenon when the limit of p/n changes from zero to infinity. When q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0$$\end{document}, the limiting spectral radii for Ginibre matrices have been obtained by Jiang and Qi [J Theor Probab 30: 326-364, 2017]. When q diverges to infinity as n approaches infinity, we prove that the logarithmic spectral radii exhibit a normal limit, which reduces to the limiting distribution for spectral radii for the spherical ensemble obtained by Chang et al. [J Math Anal Appl 461: 1165-1176, 2018] when p=q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=q$$\end{document}.
引用
收藏
页码:3756 / 3780
页数:25
相关论文
共 50 条
  • [41] LIMITING SPECTRAL DISTRIBUTION FOR A CLASS OF RANDOM MATRICES
    YIN, YQ
    JOURNAL OF MULTIVARIATE ANALYSIS, 1986, 20 (01) : 50 - 68
  • [42] Limiting spectral distribution of X X′ matrices
    Bose, Arup
    Gangopadhyay, Sreela
    Senb, Arnab
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (03): : 677 - 707
  • [44] Bulk and soft-edge universality for singular values of products of Ginibre random matrices
    Liu, Dang-Zheng
    Wang, Dong
    Zhang, Lun
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1734 - 1762
  • [45] Spectral Radii of Large Non-Hermitian Random Matrices
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (01) : 326 - 364
  • [46] Spectral radii of fixed Frobenius norm perturbations of nonnegative matrices
    Han, LX
    Neumann, M
    Tsatsomeros, M
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) : 79 - 92
  • [47] Achievable spectral radii of symplectic Perron-Frobenius matrices
    Ackermann, R.
    NEW YORK JOURNAL OF MATHEMATICS, 2011, 17 : 683 - 697
  • [48] SPECTRAL RADII OF CERTAIN ITERATION MATRICES AND CYCLE MEANS OF DIGRAPHS
    ELSNER, L
    HERSHKOWITZ, D
    SCHNEIDER, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 192 : 61 - 81
  • [49] OPERATIONS ON SPECTRAL RADII OF POSITIVE INTEGRAL SYMMETRICAL-MATRICES
    DELAHARPE, P
    WENZL, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (17): : 733 - 736
  • [50] SPECTRAL RADII OF TOURNAMENT MATRICES WHOSE GRAPHS ARE RELATED BY AN ARE REVERSAL
    KIRKLAND, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 217 : 179 - 202