A Compliant, Force-Controlled Active Tail for Miniature Robots

被引:0
|
作者
Raheem, Haider [1 ]
Ozbek, Doga [1 ]
Ugur, Mustafa [1 ]
Ozcan, Onur [1 ]
机构
[1] Bilkent Univ, Dept Mech Engn, Ankara, Turkiye
关键词
Soft robot applications; soft sensors; soft robot materials and design; miniature robots;
D O I
10.1109/ROBOSOFT60065.2024.10521935
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Climbing up the slopes and scaling the obstacles are challenging tasks for miniature robots. By taking inspiration from nature, this paper investigates the use of a tail, like a lizard to aid the climbing capabilities of our miniature robot. We present the design of an active soft tail controlled by the force feedback from a 3D-printed, custom, soft force sensor. This paper also investigates the benefit of using an active tail controlled by force to climb slopes and obstacles. Increasing the slope that the miniature robot attempts to scale increases the need for the force applied by the tail to avoid the pitch-back movement of the robot. We can observe a positive correlation between the force applied by the tail and the slope of the surface. The experiments were conducted until the maximum degree of incline of slope that the robot could climb without any adhesive feet, i.e., 20 degrees. Additionally, this paper proves that the tail also improves the tail obstacle scaling capability of the robot. The maximum heights of the obstacle that the robot scales with and without the tail are 19 mm and 9 mm respectively.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 50 条
  • [41] Theoretical Transfer Function for Force-controlled Wave Machines
    Spinneken, Johannes
    Swan, Chris
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2011, 21 (03) : 169 - 177
  • [42] Behavior of cell aggregates under force-controlled compression
    Giverso, C.
    Preziosi, L.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2013, 56 : 50 - 55
  • [43] Lightweight Force-Controlled Device for Freehand Ultrasound Acquisition
    Sai, Huayang
    Xu, Zhenbang
    Xia, Chengkai
    Wang, Lijuan
    Zhang, Jie
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2023, 70 (09) : 944 - 960
  • [44] User Interface of Force-controlled Arm for Endoscopic Surgery
    Kasai, Takara
    Nagao, Daisuke
    Kuroda, Yohei
    Miyamoto, Atsushi
    Matsuda, Yasuhiro
    Fukushima, Tetsuharu
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 6477 - 6483
  • [45] Force-controlled automatic microassembly of tissue engineering scaffolds
    Zhao, Guoyong
    Teo, Chee Leong
    Hutmacher, Dietmar Werner
    Burdet, Etienne
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (03)
  • [46] Improving nanocutting surface quality by force-controlled rolling
    Xu, Feifei
    Huang, Wen
    Fang, Fengzhou
    Zhang, Xiaodong
    APPLIED NANOSCIENCE, 2021, 11 (03) : 763 - 769
  • [47] Force-Controlled Fluidic Injection into Single Cell Nuclei
    Guillaume-Gentil, Orane
    Potthoff, Eva
    Ossola, Dario
    Doerig, Pablo
    Zambelli, Tomaso
    Vorholt, Julia A.
    SMALL, 2013, 9 (11) : 1904 - 1907
  • [48] Force-Controlled Patch Clamp of Beating Cardiac Cells
    Ossola, Dario
    Amarouch, Mohamed-Yassine
    Behr, Pascal
    Voeroes, Janos
    Abriel, Hugues
    Zambelli, Tomaso
    NANO LETTERS, 2015, 15 (03) : 1743 - 1750
  • [49] An Adaptive Mechatronic Exoskeleton for Force-Controlled Finger Rehabilitation
    Dickmann, Thomas
    Wilhelm, Nikolas J.
    Glowalla, Claudio
    Haddadin, Sami
    van der Smagt, Patrick
    Burgkart, Rainer
    FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [50] The effect of force-controlled biting on human posture control
    Hellmann, D.
    Stein, T.
    Potthast, W.
    Rammelsberg, P.
    Schindler, H. J.
    Ringhof, S.
    HUMAN MOVEMENT SCIENCE, 2015, 43 : 125 - 137