Hyper-parameter Optimization Using Continuation Algorithms

被引:1
|
作者
Rojas-Delgado, Jairo [1 ]
Jimenez, J. A. [2 ]
Bello, Rafael [3 ]
Lozano, J. A. [1 ,4 ]
机构
[1] Basque Ctr Appl Math, Bilbao, Spain
[2] Univ Ciencias Informat, Havana, Cuba
[3] Univ Cent Las Villas, Santa Clara, Cuba
[4] Univ Basque Country UPV EHU, Donosti, Intelligent Syst Grp, Donostia San Sebastian, Spain
来源
METAHEURISTICS, MIC 2022 | 2023年 / 13838卷
关键词
Hyper-parameter; Optimization; Continuation; Machine learning;
D O I
10.1007/978-3-031-26504-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyper-parameter optimization is a common task in many application areas and a challenging optimization problem. In this paper, we introduce an approach to search for hyper-parameters based on continuation algorithms that can be coupled with existing hyper-parameter optimization methods. Our continuation approach can be seen as a heuristic to obtain lower fidelity surrogates of the fitness function. In our experiments, we conduct hyper-parameter optimization of neural networks trained using a benchmark set of forecasting regression problems, where generalization from unseen data is required. Our results show a small but statistically significant improvement in accuracy with respect to the state-of-the-art without negatively affecting the execution time.
引用
收藏
页码:365 / 377
页数:13
相关论文
共 50 条
  • [41] Experienced Optimization with Reusable Directional Model for Hyper-Parameter Search
    Hu, Yi-Qi
    Yu, Yang
    Zhou, Zhi-Hua
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2276 - 2282
  • [42] Quadratic optimization for the hyper-parameter based on maximum entropy search
    Li, Yuqi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (03) : 4991 - 5006
  • [43] Hyper-parameter Selection in Advanced Synthetic Aperture Radar Imaging Algorithms
    Batu, Oezge
    Cetin, Muejdat
    2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 493 - 496
  • [44] Hyper-parameter optimization in classification: To-do or not-to-do
    Ngoc Tran
    Schneider, Jean-Guy
    Weber, Ingo
    Qin, A. K.
    PATTERN RECOGNITION, 2020, 103
  • [45] Hyper-Parameter Selection in Deep Neural Networks Using Parallel Particle Swarm Optimization
    Lorenzo, Pablo Ribalta
    Nalepa, Jakub
    Sanchez Ramos, Luciano
    Ranilla Pastor, Jose
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1864 - 1871
  • [46] Classification of Similar Sports Images Using Convolutional Neural Network with Hyper-Parameter Optimization
    Podgorelec, Vili
    Pecnik, Spela
    Vrbancic, Grega
    APPLIED SCIENCES-BASEL, 2020, 10 (23): : 1 - 24
  • [47] Continuous Hyper-parameter OPtimization (CHOP) in an ensemble Kalman filter
    Luo, Xiaodong
    Xia, Chuan-An
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [48] Weighted Voting Based Ensemble Classification with Hyper-parameter Optimization
    Gokalp, Osman
    Tasci, Erdal
    2019 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CONFERENCE (ASYU), 2019, : 550 - 553
  • [49] Speeding up Hyper-parameter Optimization by Extrapolation of Learning Curves Using Previous Builds
    Chandrashekaran, Akshay
    Lane, Ian R.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT I, 2017, 10534 : 477 - 492
  • [50] Framework for classification of cancer gene expression data using Bayesian hyper-parameter optimization
    Nimrita Koul
    Sunilkumar S. Manvi
    Medical & Biological Engineering & Computing, 2021, 59 : 2353 - 2371