One class class of coupled system fractional impulsive hybrid integro-differential equations

被引:0
|
作者
Hannabou, Mohamed [1 ]
Awadalla, Muath [2 ]
Bouaouid, Mohamed [3 ]
Elamin, Abd Elmotaleb A. M. A. [4 ]
Hilal, Khalid [3 ]
机构
[1] Sultan Moulay Slimane Univ, Dept Math & Comp Sci, Beni Mellal, Morocco
[2] King Faisal Univ, Coll Sci, Dept Math & Stat, Al Ahsaa 31982, Saudi Arabia
[3] Univ Sultan Moulay Slimane, Lab Math Appl & Calcul Sci, BP 523, Beni Mellal 23000, Morocco
[4] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanity, Dept Math, Sulail 11942, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 07期
关键词
coupled system; fractional impulsive hybrid integro-di ff erential equations; fixed point theorem; hybrid boundary conditions;
D O I
10.3934/math.2024908
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we investigate the existence of solution for a class of coupled fractional impulsive hybrid integro-differential equations with hybrid boundary conditions. Our primary tools for this analysis are the Banach contraction mapping principle (BCMP) and Schaefer's fixed point theorem. This study ended with two applied examples to facilitate understanding of the theoretical results obtained.
引用
收藏
页码:18670 / 18687
页数:18
相关论文
共 50 条
  • [31] On Approximate Solution of One Class of Singular Integro-Differential Equations
    Gabbasov, N. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (02) : 231 - 240
  • [32] SOLUTION OF ONE CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS BY SPLITTING METHOD
    KALAIDA, OF
    MOZOK, GM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1973, (04): : 302 - 305
  • [33] Controllability of Impulsive Fractional Integro-Differential Evolution Equations
    Haide Gou
    Yongxiang Li
    Acta Applicandae Mathematicae, 2021, 175
  • [34] Controllability of Impulsive Fractional Integro-Differential Evolution Equations
    Gou, Haide
    Li, Yongxiang
    ACTA APPLICANDAE MATHEMATICAE, 2021, 175 (01)
  • [35] Solvability for a coupled system of nonlinear fractional integro-differential equations
    Abdellaoui, Mohamed Amin
    Dahmani, Zoubir
    NOTE DI MATEMATICA, 2015, 35 (01): : 95 - 107
  • [36] Controllability for a class of fractional neutral integro-differential equations with unbounded delay
    Vijayakumar, V.
    Selvakumar, A.
    Murugesu, R.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 303 - 312
  • [37] Operational Tau approximation for a general class of fractional integro-differential equations
    Vanani, S. Karimi
    Aminataei, A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2011, 30 (03): : 655 - 674
  • [38] Ulam–Hyers–Rassias Stability for a Class of Fractional Integro-Differential Equations
    E. Capelas de Oliveira
    J. Vanterler da C. Sousa
    Results in Mathematics, 2018, 73
  • [39] Oscillation criteria for a certain class of fractional order integro-differential equations
    Asliyuce, Serkan
    Guvenilir, A. Feza
    Zafer, Agacik
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (02): : 199 - 207
  • [40] Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations
    M. Jamil
    R. A. Khan
    K. Shah
    Boundary Value Problems, 2019