Microstructural design by combining nanograins and spinodal decomposition in a Fe-Cr alloy

被引:1
|
作者
Macchi, Juan [1 ,4 ]
Nakonechna, Olha [1 ]
Henry, Ronan [1 ]
Castro, Celia [1 ]
Edalati, Kaveh [2 ]
De Geuser, Frederic [3 ]
Sauvage, Xavier [1 ]
Lefebvre, Williams [1 ]
机构
[1] Univ Rouen Normandie, Normandie Univ, CNRS, GPM UMR 6634,INSA Rouen Normandie, F-76000 Rouen, France
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, WPI, Fukuoka, Japan
[3] Univ Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France
[4] GPM, Ave Univ, F-76800 St Etienne Du Rouvray, France
关键词
Spinodal decomposition; HPT; APT; Fracture toughness; Micro-cantilever; TRANSMISSION ELECTRON-MICROSCOPY; SEVERE PLASTIC-DEFORMATION; ATOM-PROBE TOMOGRAPHY; AL-ZN; PRECIPITATION KINETICS; VACANCIES; DEFECTS; ENERGY;
D O I
10.1016/j.scriptamat.2024.116247
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microstructure design of new high-performance alloys requires the combination of multiple hardening mechanisms. This study explores combining nanograins with spinodal decomposition strengthening in an Fe-51.4Cr (at. %) alloy. High-pressure torsion (HPT) produced a nanostructure with a 51 nm grain size. Atom probe tomography analysis of deformed and annealed samples revealed spinodal decomposition after one hour of annealing. HPT accelerated decomposition kinetics is due to the high vacancy concentration. Microhardness remained stable due to spinodal hardening, despite a decrease in the Hall-Petch strengthening contribution. However, fracture toughness decreased.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Phase decomposition at 402°C in an Fe-Cr alloy: Mossbauer spectroscopic study
    Dubiel, S. M.
    Zukrowski, J.
    MATERIALS CHARACTERIZATION, 2017, 129 : 282 - 287
  • [32] Early stages of spinodal decomposition in Fe-Cr resolved by in-situ small-angle neutron scattering
    Hornqvist, M.
    Thuvander, M.
    Steuwer, A.
    King, S.
    Odqvist, J.
    Hedstrom, P.
    APPLIED PHYSICS LETTERS, 2015, 106 (06)
  • [33] Mechanical and microstructural investigations of nitrided Fe-Cr layers
    Sennour, M
    Jacq, C
    Esnouf, C
    JOURNAL OF MATERIALS SCIENCE, 2004, 39 (14) : 4533 - 4541
  • [34] Reactions of U-Zr alloy with Fe and Fe-Cr alloy
    Nakamura, K
    Ogata, T
    Kurata, M
    Itoh, A
    Akabori, M
    JOURNAL OF NUCLEAR MATERIALS, 1999, 275 (03) : 246 - 254
  • [35] Mechanical and microstructural investigations of nitrided Fe-Cr layers
    M. Sennour
    C. Jacq
    C. Esnouf
    Journal of Materials Science, 2004, 39 : 4533 - 4541
  • [36] Phase-decomposition-related short-range ordering in an Fe-Cr alloy
    Dubiel, S. M.
    Zukrowski, J.
    ACTA MATERIALIA, 2013, 61 (16) : 6207 - 6212
  • [37] INVESTIGATION OF RADIATION DEFECTS IN FE-CR ALLOY
    ARBUZOV, VL
    DRUZHKOV, AP
    NIKOLAEV, AL
    KLOTSMAN, SM
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1992, 124 (04): : 409 - 415
  • [38] EARLY GROWTH OF OXIDE ON A FE-CR ALLOY
    HOWES, VR
    CORROSION SCIENCE, 1967, 7 (11) : 735 - &
  • [39] Vibrational Properties of α- and σ-Phase Fe-Cr Alloy
    Dubiel, S. M.
    Cieslak, J.
    Sturhahn, W.
    Sternik, M.
    Piekarz, P.
    Stankov, S.
    Parlinski, K.
    PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [40] A study on microstructural evolution and corrosion behavior of spark plasma sintered Fe-Cr alloy system
    Kundu, Arnab
    Shrestha, Nikunja
    Korjenic, Alen
    Raja, Krishnan S.
    Charit, Indrajit
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (22) : 14171 - 14188