Predicting land use and land cover change dynamics in the eThekwini Municipality: a machine learning approach with Landsat imagery

被引:0
|
作者
Buthelezi, Mthokozisi Ndumiso Mzuzuwentokozo [1 ]
Lottering, Romano Trent [1 ]
Peerbhay, Kabir Yunus [1 ]
Mutanga, Onisimo [1 ]
机构
[1] Univ KwaZulu Natal, Sch Agr Earth & Environm Sci, Pietermaritzburg, South Africa
基金
新加坡国家研究基金会;
关键词
Land cover; land use; remote sensing; machine learning; Landsat; DIFFERENCE WATER INDEX; BUILT-UP INDEX; CLASSIFICATION; AREAS; PERFORMANCE; ALGORITHMS; QUANTITY; ACCURACY; NDWI; TM;
D O I
10.1080/14498596.2024.2378362
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Monitoring and providing accurate land use and land cover (LULC) change information is vital for sustainable environmental planning. This study used Landsat imagery from 2002 to 2022 to create updated LULC change maps for the eThekwini Municipality. Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) were used to conduct these LULC classifications, with XGBoost achieving the highest accuracy (80.57%). The generated maps revealed a significant decrease in cropland and an increase in impervious surfaces. As such, this research established a framework for continuous LULC mapping and highlighted Landsat 9's potential in LULC classifications.
引用
收藏
页码:1241 / 1263
页数:23
相关论文
共 50 条
  • [41] Assessing land use land cover dynamics of wetland ecosystems using Landsat satellite data
    Jamal, Saleha
    Ahmad, Wani Suhail
    SN APPLIED SCIENCES, 2020, 2 (11):
  • [42] Assessing land use land cover dynamics of wetland ecosystems using Landsat satellite data
    Saleha Jamal
    Wani Suhail Ahmad
    SN Applied Sciences, 2020, 2
  • [43] Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping
    Potapov, Peter
    Hansen, Matthew C.
    Kommareddy, Indrani
    Kommareddy, Anil
    Turubanova, Svetlana
    Pickens, Amy
    Adusei, Bernard
    Tyukavina, Alexandra
    Ying, Qing
    REMOTE SENSING, 2020, 12 (03)
  • [44] ESTIMATION OF LAND COVER CHANGE USING LANDSAT SATELLITE IMAGERY AND THE RANDOM FOREST CLASSIFIER
    Rodriguez-Rosales, Jose
    Gonzalez-Camacho, Juan Manuel
    Macedo-Cruz, Antonia
    Fernandez-Ordonez, Yolanda M.
    AGROCIENCIA, 2024, 58 (08)
  • [45] Optimal Land Cover Mapping and Change Analysis in Northeastern Oregon Using Landsat Imagery
    Campbell, Michael
    Congalton, Russell G.
    Hartter, Joel
    Ducey, Mark
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2015, 81 (01): : 37 - 47
  • [46] Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach
    Parthasarathy Kulithalai Shiyam Sundar
    Paresh Chandra Deka
    Environmental Science and Pollution Research, 2022, 29 : 86220 - 86236
  • [47] Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach
    Sundar, Parthasarathy Kulithalai Shiyam
    Deka, Paresh Chandra
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (57) : 86220 - 86236
  • [48] ANALISYS OF LAND COVER CHANGE IN THE MUNICIPALITY OF CURITIBA, STATE OF PARANA - BRAZIL, FROM 1986 TO 2004, USING LANDSAT-TM IMAGERY
    Vieira, Carolina Haddad Souza Dias
    Biondi, Daniela
    REVISTA ARVORE, 2008, 32 (03): : 479 - 487
  • [49] An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery
    Yuan, Hui
    Van Der Wiele, Cynthia F.
    Khorram, Siamak
    REMOTE SENSING, 2009, 1 (03) : 243 - 265
  • [50] Dynamic monitoring of land-use/land-cover change and urban expansion in Shenzhen using Landsat imagery from 1988 to 2015
    Dou, Peng
    Chen, Yangbo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (19) : 5388 - 5407